Part II – February 1968 - Papers - Metals Reoxidation in Aluminum Electrolysis

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 463 KB
- Publication Date:
- Jan 1, 1969
Abstract
The reaction between CO, and aluminum in cryolite-alumina melts in contact with aluminum has been studied by passing CO2 over the melt. In unstirred melts a homogeneous reaction between dissolved metal and dissolved CO2 was observed. In stirred melts in which convection was induced by bubbling argon through the melt, the dissolved metal apparently reacted mainly with gaseous CO2. The rate of formation of CO increased slightly with increasing depth of the melt, and it did not depend on whether CO2 was passed over or bubbled through the melt. The rate of formation of CO increased with increasing area of the metal/melt interface and with the application of anodic current to the metal. It is concluded that the dissolution of metal into the melt is the rate-determining reaction. THE current efficiency in aluminum electrolysis is determined by the rate of the recombination reaction between the anode gas and the metal: 2A1 + 3CO2—A12O3 + 3CO [1] as originally stated by Pearson and waddington.1 The occurrence of this reaction in cryolite-alumina melts in contact with aluminum was first verified experimentally by Schadinger.2 Thonstad3 has shown that the reaction may proceed further to give free carbon: 2A1 + 3CO— A12O3 + 3C [2] Normally only a few percent of the CO formed undergoes such reduction. The mechanism of these reactions has not yet been clarified. Aluminum, as well as CO,, is soluble in the melt. The solubility of aluminum in cryolite-alumina melts at around 1000°C corresponds to 75 x 10- 6 mole A1 per cu cm,4 while that of CO2 is only 3 x 10-6 mole CO, per cu cm.5 Taking into account the stoichiometry of Reaction [I], the ratio between dissolved aluminum and dissolved CO2 available for the reaction in a saturated melt is about 40. Therefore, as will be shown in the following, the reaction probably mainly occurs between gaseous COa and dissolved aluminum. The dissolved aluminum presumably consists of subvalent ions of aluminum and sodium.4'6 Since the interpretation of the present results is not dependent upon the nature of this solution, the dissolved metal will be designated solely as Al+ in the following. The reaction can then be divided into four steps: A) dissolution of metal, e.g., 2A1 + Al3 — 3A1+ [3] B) diffusion of dissolved metal through a boundary layer; C) transport of dissolved metal through the bulk of the melt; D) Reaction [1]. If dissolved CO, takes part in the reaction, three additional steps embodying the dissolution and transport of CO2 must be added. schadinger2 observed, when bubbling CO2 through the melt, that the rate of formation of CO (in the following designated rfco) did not depend on the distance from the metal surface. The results also indicate that the rate of bubbling did not affect the rfco. When passing CO, over the melt, Revazyan7 found that the loss of metal did not depend on the depth of the melt above the metal or on the flow rate of CO2, and concluded that Step A is rate-determining. In an unstirred melt, however, Gjerstad and welch8 found that the rfCo decreased with increasing depth of the melt, indicating that step C was rate-determining. It thus appears that the rate control of the process depends on the experimental conditions, particularly on the convection. In the present measurements the reaction has been studied in unstirred as well as in stirred melts. EXPERIMENTAL AND RESULTS The experiments were carried out at 1000°C in a Kanthal furnace with a 10-cm uniform temperature zone (±0.l°C). The melts were made up of "super purity" aluminum (99.998 pct), hand-picked natural cryolite, and reagent-grade alumina. In experiments where alumina crucibles were used, the alumina content in the melt was close to saturation (13.5 wt pct9); otherwise it was 4 wt pct. Pure Co2 (99.85 pct) was passed over the melt, and the exit gas was analyzed for CO2 and CO by the conventional absorption method.3 From the weighed amount of CO (as CO2) the rfco was calculated as the number of moles of CO formed per min per sq cm of the surface area of the melt. The amount of carbon formed by Reaction [2] was not determined. As already indicated the rfco is much higher than the rfC, by Reaction [2]. Since the rfC probably is proportional to the rfco, the measured rfco should then the proportional to, but slightly lower than, the total rate of Reactions [I] and 121. In general the scatter of results obtained in duplicate measurements was ±5 to 10 pct, while within a given run a precision of ±3 to 5 pct was obtained. The various crucible assemblies that were used will be described below. Measurements in Unstirred Melts. When carrying out aluminum electrolysis in small alumina crucibles. Tuset10 observed that after solidification the lower part of the electrolyte was gray and contained free metal, while the upper part near the anode was white and contained no metal. One may test for the presence of free metal by treating with dilute hydrochlorid acid.
Citation
APA:
(1969) Part II – February 1968 - Papers - Metals Reoxidation in Aluminum ElectrolysisMLA: Part II – February 1968 - Papers - Metals Reoxidation in Aluminum Electrolysis. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.