Part I – January 1969 - Papers - Kinetics of Nitriding Low-Carbon Steel in Atmospheres Containing Ammonia

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 870 KB
- Publication Date:
- Jan 1, 1970
Abstract
Weight-gain data obtained by nitriding low-carbon sheet steel in an amrnonia CNH,) atmosphere indicated that the process obeyed a parabolic rate law. The calculated actization energy for nitriding in the range 964" to 1268°F agreed reasonably well with published data. At 1358"F, rate data indicated that the activation energy decreased. Weight-gain data obtained by uszng mixtures of NH3 -Nz at 1268°F containzng jrom 10 to 100 zol pct NH3 also obeyed a parabolic rate law. The rate of 'nitriding increased with an increase in the NH3 content of the gas Mixture. It is well-known that steel heated in gas mixtures containing ammonia (NH3) takes up much larger quantities of nitrogen than steel heated in nitrogen, both gases having a total pressure of 1 atm;' this phenomenon can presumably be attributed to the catalytic decomposition of NH3 on the steel surface to furnish nascent (monatomic) nitrogen. This process was studied bv Brunauer. Jefferson, Emmett, and Hend-ricks at furnace temperatures of 752" and 831°F2 using mixtures of NH3 in Hz. Englehardt and wagner3 reported that, at a furnace temperature of 914°F and under their experimental conditions, both nitriding and denitriding were controlled by the rate of gas-metal reactions at a steel surface rather than by the rate of diffusion of nitrogen in iron. The present study was undertaken to obtain information on the kinetics of nitriding low-carbon steel strip at higher temperatures so that practical rates for short-time strip-annealing treatments could be estimated. Variables studied included time: temperature, and NH, content in the annealing atmosphere. Mechanical and chemical characteristics of steel nitrided in this manner will not be considered in the present article. MATERIALS AND EXPERIMENTAL WORK The samples used were from a commercial low-carbon steel, 0.0244 cm thick, in the cold-reduced condition. The chemical composition of this steel is given in Table I. Panels were cut to 5.1 by 17.8 cm, degreased in toluene, and weighed just before treatment. Four specimens were nitrided under each of the experimental conditions. A study was made of the nitriding rate of steel in a 100 vol pct ammonia atmosphere, 740 mm pressure, at five specific temperatures within the range 964" to 1358°F. The nitriding rates of steel in ammonia-nitrogen gas mixtures containing 10, 18, 26, 50, and 100 vol pct ammonia, 740 mm total pressure, at 1268°F were also determined. All atmospheres used were dried by successively passing them through drying towers packed with soda lime and with Linde Molecular sieve Type 4A. Quoted gas compositions refer to those entering the furnace. Specimens were held in the constant-temperature zone of a vertical annealing tube furnace for times of 14, 3, 5, 10, or 15 min. Gas flow rates were maintained at 3.8 cu ft per hr, which was nineteen volume changes per hour for the system used. The rate of flow was selected to provide a high level of free NH3 for cracking on the steel surface where the ammonia gas is most effectively used as a nitriding agent. The vertical annealing tube furnace consisted of a Hevi-Duty tube furnace with a 2 1/2-in.-ID mullite ceramic high-temperature tube. The constant-temperature zone (controlled within 10°F) was about 10 in. long. After each specimen was degreased, a hole was punched in one end, for attaching the specimen by hook to a chain so that it could be lowered into or raised from the high-temperature portion of the tube by means of a power-driven winch. A stainless-steel access port with O-ring seals was connected by suitable glass-to-metal seals to the cool upper portion of the furnace tube. After the weighed specimen was placed in the access port, the furnace tube was evacuated to approximately 10"3 torr, and then the system was flushed thoroughly with the atmosphere under study. When the gas flow rate and constant-temperature zone of the furnace were established, the specimen was lowered into the constant-temperature zone. The atmosphere flowed from the top to the bottom of the vertical furnace tube and was then vented. For all these runs, during the first 3 min of the time the specimen was in the constant-temperature zone of the furnace the specimen was heating up to the tempera-
Citation
APA:
(1970) Part I – January 1969 - Papers - Kinetics of Nitriding Low-Carbon Steel in Atmospheres Containing AmmoniaMLA: Part I – January 1969 - Papers - Kinetics of Nitriding Low-Carbon Steel in Atmospheres Containing Ammonia. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.