Part I – January 1968 - Papers - Texture Development in Copper and 70-30 Brass

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 416 KB
- Publication Date:
- Jan 1, 1969
Abstract
A detailed study of texture developmenf in poly crystalline copper atzd 70-30 brass has been completed. Textural changes as a function of deformation are shoum by pole jigmres and by intensity measurements oF- various rejlectiotzs from the rolling plane and the rolling direction. These examinations were accompanied by measurements of stacking fault frequency, hardness changes, and microstructure. Some of the results were briefly presented earlier. Additional results reported here are consistent with the idea that deformation faulting or slip by partial dislocations is of primary importance in the formation of deformation textures in fcc metals. lo examine the idea that deformation faulting is of primary importance in determining whether the texture is the copper type or the brass type an extensive study of the development of polycrystalline textures in copper and 70-30 brass was initiated. Besides the determination of complete pole figures, the intensities of the various reflections from both the rolling plane and the plane perpendicular to the rolling direction, the peak shifts due to deformation stacking faults, and the hardness of the rolled specimens were examined at various reductions from 10 to 99 or 99.5 pct. Mi-crostructures were examined by transmission electron microscopy. Some of the results were briefly presented in an earlier publication.' Since then, additional information has been obtained. This is given in the present paper. EXPERIMENTAL PROCEDURE Material and Specimen Preparation. The material used was a commercial electrolytic copper bar 1i in. wide and 2 in. thick and a 70-30 brass bar la in. wide and 1i in. thick. Chemical analysis indicated a purity of 99.97 pct for the copper, with 0.025 pct 0 as the major impurity. The 70-30 brass was of higher purity with 0.0016 pct 0 as the major impurity. Extreme care was taken in the preparation of the starting material to insure uniformly fine grains with a nearly random initial texture. The two bars were first cold-forged and then annealed to eliminate any original texture. The grains were then refined by several cold rolling (approx 30 pct reduction) and annealing treatments. The + -hr anneals were carried out in a salt bath at 390" to 440°C for copper and at 490°C for brass. The resulting penultimate grain size was 0.06 mm for copper and 0.03 mm for brass, and both showed very little preferred orientation. The number of prior cold rolling and annealing cycles was such that the final thickness after various final reductions of 10 to 95 (for brass) or 99 (for copper) pct was the same (0.020 in.). These annealed strips were rolled in two directions by reversing end for end between passes according to the following schedule: 0.006 in. per pass to 0.100 in., 0.003 in. per pass to 0.050 in., 0.002 in. per pass to 0.025 in., 0.001 in. per pass to 0.020 in. Texture Determination. The development of rolling textures was studied by examining complete pole figures determined from the (111) reflection. Specimens thinned from one face of the strip to half thickness (0.010 in.) were used to obtain the central portion of the pole figures, while specimens thinned from both faces to 0.003 in. were used to obtain the peripheral portion. The reflection and transmission techniques have been described previously. In addition to X-rav pole figures, texture development was also studied b; examining the intensity variation of the (Ill), (200), (2201, (311), (331), (420), and (442) reflections from the rolling plane and from the plane normal to the rolling direction, as a function of deformation. The same specimens used for the central portion of the pole figures were used for the intensity measurements of the various reflections from the rolling plane. For intensity measurements from the plane normal to the rolling direction, composite specimens were prepared by mounting sections cut parallel to the transverse direction of the strip. An epoxy resin was used to bond these sections together, and the entire composite was then mounted in a cold-setting resin to facilitate subsequent polishing and etching to remove distorted metal at the cut. The intensities were expressed in units of the integrated intensities measured from an annealed copper specimen having almost no preferred orientation. Stacking Fault Frequency Determination. Following the analysis of Warren: the stacking fault frequency, a, was determined from the change in the peak separation (A%) of two neighboring reflections of a deformed specimen, as compared with the normal peak separations of a fully annealed specimen. To obtain sufficient intensities for the second-order reflections, (222) and (400), composite specimens were prepared from parallel sections cut from the strip at 30 deg to the rolling direction for copper and 25 deg for the brass.* From texture data, these sections are known to contain a large population of both (111) and (200) planes. Since residual stresses can also cause X-ray line shifts (the direction of line shifts depends upon the sign of the stress), the use of composite specimens consisting of sectioned planes should help compensate for these effects as the residual stresses change sign from the surface to the central section of a rolled strip. Since the amount of peak shift is almost un-measurable in brass rolled 15 pct and in copper rolled
Citation
APA:
(1969) Part I – January 1968 - Papers - Texture Development in Copper and 70-30 BrassMLA: Part I – January 1968 - Papers - Texture Development in Copper and 70-30 Brass. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.