Part I – January 1968 - Papers - On the Constitution of the Pseudobinary Section Lead Telluride-Iron

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 545 KB
- Publication Date:
- Jan 1, 1969
Abstract
The phase diagram of the Pseudobinary section PbTe-Fe was determined. It was found to contain a monotectic and a eutectic reaction, the latter one taking place at 14 at. pct Fe and 875° * 5°C. The solid solubility of iron in PbTe was found to be 0.3 at. pct by electronmicroProbe analysis. No solubility of PbTe was detected in iron. Slight deviations from true pseudobinary behavior were found to occur in the range of - 5 to 10 at. pct Fe. In the course of a general investigation of reactions of various metals with lead and tin telluride,' the lead telluride-iron system was reinvestigated. It had been established much earlier than iron does not chemically react with lead telluride but forms a eutectic with a melting point of 879" The eutectic composition or other related information has never been reported, but for a number of years iron has been in general use for contacting of lead telluride and lead telluride alloys for thermoelectric applications. It seems therefore desirable to clarify the exact constitution of the system to furnish a base for the long-term evaluation of bonds made between lead telluride and iron either by pressure contacting or by brazing methods. I) EXPERIMENTAL METHODS Lead telluride-iron alloys were prepared in 10-g charges, using premelted lead telluride. This material was prepared from high-purity, semiconductor-grade lead and tellurium obtained from the American Smelting and Refining Co. and described as 99.999 pct pure. The iron used was "Armco" iron; the major impurities found here were 0.02 pct C, 0.018 pct Si, and 0.015 pct Cr. All remaining impurities were less than 0.01, the total of all impurities not exceeding 0.15 pct. Charges were prepared in closed quartz arnpoules which were evacuated and in some cases backfilled with high-purity argon to retard excessive lead telluride evaporation and deposition in slightly cooler parts of the ampoule. For high iron concentrations, this can lead to total separation of the constituents, since the vapor pressure and the sublimation rate of PbTe are quite high.4 Nevertheless, since the ampoules are closed, no change in overall composition was expected and the nominal composition of all alloys was assumed to be retained. X-ray diffraction analysis, thermal analysis, and microsections were used in the evaluation of the alloys. The nature of the system was such that X-ray diffraction was not particularly helpful. It merely served to establish that at all concentrations PbTe and a! iron were in equilibrium at room temperature. Thermal analysis was carried out by taking direct temperature vs time curves on a Sargent recorder where a width of 10 in. was kept as 1 or 0.5 mv by use of an automatic bucking voltage network. Quartz ampoules with minimized dead space, coated with boron nitride and fitted with a thermocouple reentrant, were used as containers for the charge. At high temperatures and over long periods of time, boron nitride reacts with iron. For the thermal analysis runs, however, this was not significant. More significant was the fact that the vapor pressure of PbTe at some of the meas -uring temperatures apparently exceeded I atrn quite considerably. This, in some cases, caused the slightly softened quartz tubes to blow out if great care was not taken to contain them and minimize time and temperatures used. As containers pure nickel tubes were used which also served to avoid temperature gradients in the quartz ampoule. Nevertheless, the experimental difficulties at high temperatures were severe and the monotectic temperature could therefore not be determined accurately. In general, the accuracy reached by the thermal analysis setup in this case is *4"C as determined with gold, silver, and tin, under the conditions of analysis here. Inherently, the apparatus is capable of reaching accuracies better than i 1°C. Also, difficulties were encountered in microsection-ing. They were related to polishing, since it is rather difficult to avoid pulling the iron out of the weak and brittle lead telluride matrix. It proved best to follow a procedure where, after grinding to 600 grit on carborundum paper, a polish with 6 p diamond was used on nylon cloth. Finally, #3 "Buehler" alumina and an automatic polisher were used for -5 min only, to avoid relief. The best etching results were achieved with
Citation
APA:
(1969) Part I – January 1968 - Papers - On the Constitution of the Pseudobinary Section Lead Telluride-IronMLA: Part I – January 1968 - Papers - On the Constitution of the Pseudobinary Section Lead Telluride-Iron. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.