Papers - Self-Diffusivities of Cadmium and Lead in the Binary-Liquid Cadmium-Lead System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 2211 KB
- Publication Date:
- Jan 1, 1967
Abstract
The capillary-reservoir technique was used with lead-210 and cadmium-115m to determine the self-diffiLsion coefficients of both cadmium and lead in the liquid binary Cd-Pb system. The self-diffusion coefficients of pure cadmium and pure lead were obtained and were compared with the theoretical predictions. Good to excellent agrement between the experimental and predicted values was obtained. The self-diffusion coefficients of cadmium were tneasuved in alloys containing 2.50, 9.13, 17.40, 31.00, 45.00, 69.00, and 97.00 lot pct Cd by determining- the amount of cadniiutn-115m which diffused out of a small-bore capillavy into an infinite reservoir during- a given time peviod. Sinzila7-measurements were made with lead-210 to determine the self-diffusion coefficients of lead in these identical alloys. Diffusivities were determined from measurenzents performed in the temperature interval of 290" to 480°C. The results were correlated with the Ar-vhenius equation, and the maximum variation of the equation parameters (Q and Do) was also inrestigated . THE theory of diffusion in liquids, particularly liquid metals, is relatively undeveloped in contrast to that for the gaseous and solid states. Although the practical application of liquid metals as heat-transfer media has become increasingly important, few liquid-metals systems have been investigated. Experimental data of fundamental significance in this field are not readily obtained, which may explain but not justify the present lack of knowledge. What work has been completed is primarily restricted to liquid diffusion of pure metals; little work has been done in liquid-metal diffusion of binary mixtures. A review of liquid-metal diffusion theory and research is available elsewhere.1-4 In an effort to add to the knowledge of liquid-metal systems and to increase the basic understanding of the diffusion process in liquids, a study of diffusion in the binary-liquid system, Cd-Pb, was undertaken. The capillary-reservoir technique5 was employed to measure the self-diffusion coefficients of cadmium and lead in molten binary alloys. Measurements were made with seven selected compositions and over a temperature range from 290° to 480°C. The experimental apparatus consisted essentially of the following items: constant-temperature bath, diffusion cells, capillaries, capillary-filling device, and a radioactive tracer counting system. EXPERIMENTAL APPARATUS Constant-Temperature Bath. A cylindrical steel vessel, 8 in. in diam and 15 in. deep, surrounded by an insulated heating coil was used with a sodium-potassium nitrate salt mixture heating medium. The bath was maintained slightly below the desired control temperature by the furnace-heating element; and a 250-w heater, actuated by a Bayley proportional temperature controller, was utilized for the final control of the temperature. A constant-speed mixer stirred the salt to insure a uniform temperature within the bath. Four calibrated Chromel-Alumel thermocouples were placed at various positions in the salt bath to verify the absence of temperature gradients. The observed temperature variation during any diffusion run was less than 0.l°C. The entire furnace assembly was mounted on four shock absorbers to exclude building vibrations and the stirrer propeller blades were adjusted so not to induce vibrations within the reservoir. A schematic diagram of the furnace and the constant-temperature bath is shown in Fig. 1. Diffusion Cell. The diffusion cells and associated parts were the same, except for slight modification, as the one used by walls1 in this laboratory, and are shown in detail elsewhere.' A graphite crucible, 4 in. long and 40 mm (1-1/2 in.) ID, enclosed in a 60-mm (2-1/4 in.) Pyrex tube cell about 18 in. long, was used as a container for the melt. The reservoir (molten alloy in the graphite crucible) was usually about 2 to 2-1/2 in. deep. Graphite was used because of its satisfactory nature as a refractory material and the low solubility of carbon in molten Cd-Pb alloy.677 The Pyrex cell was closed at the bottom and fitted at the top (open end) with a 2-in. Dresser coupling. A brass flange was welded to the top of the coupling. The upper part of the diffusion assembly was bolted to this flange with an O-ring seal. The lower part of the diffusion cell was supported in a 3-in. brass cylinder which was open to allow for circulation of salt around the cell. The top assembly consisted of two synchronous motors, a drive shaft, a thermocouple well, and controlled-atmosphere inlets and outlets. One motor was used for rotation of the capillaries at a rate of 1/2 rpm in the reservoir during the diffusion run. The other motor was used for the vertical positioning of the capillaries and the capillary holder by means of a simple screw drive. The capillary holder and drive assembly were lowered into the reservoir for the run and raised after the desired diffusion time at a rate of approximately 0.4 in. per min. Capillary holders were made of graphite. These
Citation
APA:
(1967) Papers - Self-Diffusivities of Cadmium and Lead in the Binary-Liquid Cadmium-Lead SystemMLA: Papers - Self-Diffusivities of Cadmium and Lead in the Binary-Liquid Cadmium-Lead System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.