Novel 3D Template of Titanium Oxide: Silver Composite on Titanium for Applications in Supercapacitors

Canadian Institute of Mining, Metallurgy and Petroleum
M. Dadvand A. Dadvand G. Kipouros
Organization:
Canadian Institute of Mining, Metallurgy and Petroleum
Pages:
6
File Size:
855 KB
Publication Date:
Jan 1, 2019

Abstract

"A novel methodology was developed to obtain a 3D porous layer with a high aspect ratio of porosity on a titanium electrode. The porous structure allowed more active material such as hydrous ruthenium oxide to be accommodated during the fabrication of the supercapacitor, resulting in an exceptionally high capacitance per surface area. The electrode demonstrated a remarkably high capacitance of 4,800 mF/cm2. The porous layer was composed of functionalized nanoparticles of TiO2 organized in a perfect 3D hexagonal close-packed array that resulted in a highly porous 3D structure. The layer was used as a template to electrolessly deposit a thin layer of silver prior to the electrodeposition of active material. KEYWORDS Capacitance, Porous, Ruthenium, Silver, Supercapacitor, Titanium RÉSUMÉ Une méthodologie innovante a été mise au point afin d’obtenir une couche poreuse tridimensionnelle (3D) affichant un rapport d’aspect élevé en termes de porosité sur une électrode en titane. La structure poreuse permet d’utiliser une matière plus active telle que l’oxyde de ruthénium hydraté durant la fabrication du supercondensateur, ce qui se traduit par une capacité exceptionnellement élevée par surface active. L’électrode affichait une capacité remarquablement élevée de 4 800 mF/cm2. La couche poreuse était composée de nanoparticules fonctionnalisées de dioxyde de titane (TiO2) organisées dans un arrangement regroupé parfaitement hexagonal en 3D, qui a engendré une structure en 3D hautement poreuse. Cette couche a servi de modèle pour le dépôt autocatalytique d’une fine couche d’argent avant l’électrodéposition de la matière active. MOTS CLÉS argent, capacité, poreux, ruthénium, supercondensateur, titaneINTRODUCTION There is a growing demand for integrating compact energy storage elements into electronic circuits due to the miniaturization of electronic circuits, sensors, and actuators, and the increasing importance of portable and wear-able devices incorporating more advanced electronic technologies that operate in controlled or uncontrolled environments to gather, process, store, and communicate information (Deng, Ji, Chen, & Banks, 2011; Beidaghi & Wang, 2012; Chen, Ramachandran, Mani, & Saraswathi, 2014). The manufacturing of compact energy storage elements needs to be compatible with the electronic circuit microfabrication processes. Recently, interest in integrating miniaturized supercapacitors into electronic circuits has increased due to their high charge–discharge rate and long operating life; however, ultra-high power miniaturized supercapacitors suffer from low energy density, hence requiring significant enhancement in their energy density for various applications (Deng et al., 2011; Beidaghi & Wang, 2012; Chen et al., 2014)."
Citation

APA: M. Dadvand A. Dadvand G. Kipouros  (2019)  Novel 3D Template of Titanium Oxide: Silver Composite on Titanium for Applications in Supercapacitors

MLA: M. Dadvand A. Dadvand G. Kipouros Novel 3D Template of Titanium Oxide: Silver Composite on Titanium for Applications in Supercapacitors. Canadian Institute of Mining, Metallurgy and Petroleum, 2019.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account