Natural Gas Technology - An Approximate Method for Non-Darcy Radial Gas Flow

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. Rowan M. W. Clegg
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
19
File Size:
662 KB
Publication Date:
Jan 1, 1965

Abstract

Approximate analytical solutions for non-Darcy radial gas flow are derived for bounded and infinite reservoirs producing at either constant rate or constant pressure. These analytical solutions are compared with published results for non-Darcy flow obtained on digital and analogue computers, and the agreement is show to be very good. Some observations on the interpretation of gas well tests are made. INTRODUCTION The flow of gases in porous media is a problem that has been the subject of much study in recent years [l - 71 , and many methods have been proposed for solving the non-linear equations associated with it. The assumption that the flow satisfies Darcy's Law It has been observed, however, that the linear relationship between the flow rate and pressure gradient is only approximately valid even at low flow rates, and that as the flow rate increases the deviations from linearity also increase. It has been suggested by a number of authors that Darcy's Law should be replaced by a quadratic flow law of the form This form of equation was first suggested by Forchheimer [9] and, later, Katz and Cornell [10], and Irmay [lll, developed a similar equation. Houpeurt [12] derived this form of equation using the concept of an idealised pore system in which each channel consists of sequences of truncated cones giving rise to successive restrictive orifices along the channel. This type of representation leads to a quadratic flow law of type [4], for all fluids, but it is found that the quadratic term is only significant in the case of gas flow. The methods of Houpeurt for solving gas flow problems will be discussed further in another section of this paper. Solutions of the non-linear equation for Darcy gas flow 121 may be classified as either computer (digital and analogue), or approximate analytical ones. The former include the well-known solutions of Bruce et al. [13], and Aronofsky and Jenkins [14] , but the latter solutions, apart from the simple linearisation of equation (2) to yield a diffusion equation in p2 , are not so well-known. Amongst these approximate analytical solutions should be mentioned the work of Barenblatt [IS], who has applied the techniques of dimensional analysis to obtain similarity solution to a large class of non-linear equations; also, a number of Russian authors, including Barenblatt [16] , Kim [17] and others, who have used the method of moments for obtain-
Citation

APA: G. Rowan M. W. Clegg  (1965)  Natural Gas Technology - An Approximate Method for Non-Darcy Radial Gas Flow

MLA: G. Rowan M. W. Clegg Natural Gas Technology - An Approximate Method for Non-Darcy Radial Gas Flow. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account