Mining - Relationship of Geology to Underground Mining Methods

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 375 KB
- Publication Date:
- Jan 1, 1955
Abstract
Many basic engineering principles of all four phases of mining operations, namely, prospecting, exploration, development, and exploitation, can be analyzed better in terms of quantitative geology. Geological data from both field and laboratory will also complement scientific methods now being developed. THE geological data emphasized so successfully in prospecting for new deposits, that is, structural controls, strength of solutions, and type of mineralization, are basically those required for successful exploitation. In the mining of newly discovered deposits the most economical methods should be employed as early as possible to keep the overall cost per unit produced at a minimum and to permit maximum extraction of valuable minerals. A crucial question is: How can geological data be translated into useful quantitative results which will aid in achieving this end? H. E. McKinistry' has suggested that a solution may be reached in one of two ways: 1—the usual approach, use of judgment based on experience; or 2—mathematical calculations and tests on models, both subject to certain limitations. He also suggests that in addition to better use of geology more case data and theoretical data are needed on which to base sound judgment. Further research, therefore, is necessary. Perhaps in this field the emphasis should be on more specialization in mining methods and ground movement by men with thorough training in physics, engineering, geology, and underground mining. These specialists would be equipped to point out the most economical and scientific methods of exploitation. Selection of a stoping method is governed by the amount and type of support a deposit will require in the process of being mined, or by the possibility of employing the structure of the deposit to advantage in mining the ore by a caving method. In addition to these factors there are others which almost invariably influence the choice of an economical method of mining:' 1—strength of ore and wall rocks; 2—shape, horizontal area, volume, and regularity of the boundaries of the orebody, and thickness, dip and/or pitch of the deposit and individual ore shoots; 3—grade, distribution of minerals, and continuity of the ore within the boundaries of the deposit; 4—depth below surface and nature of the capping or overburden: and 5—position of the de- posit relative to surface improvements, drainage, and other mine openings. In the final analysis it is usually necessary to disregard the less important of these factors to satisfy the requirements of the more important. Because of the variation of geological conditions throughout and surrounding the deposit, no mining method will be everywhere ideally applicable to the conditions encountered in one ore deposit. The immediate problem is to interpret the above physical characteristics of deposits in terms of geological characteristics. Very few quantitative geological data are available on the factors related to a choice of mining methods. However, there are many descriptive data in mining and geological literature which collectively show how important an effect details of geology have upon all phases of mining operations. The following categories of basic mining methods were investigated to establish the geological factors that have affected their successful application: 1— open stopes with pillars; 2—sublevel stoping; 3— shrinkage stoping; 4—cut-and-fill stoping; 5— square-set mining; 6—top slicing and sublevel caving; and 7—block caving. It should be noted that the first five of these methods are listed in the order of increasing support requirements. Mines were selected as examples only where geological descriptions were complete enough to warrant their use. A study of the geological factors involved in mining operations led to a choice of the following classifications, employed in Table I: 1—structural type of orebody; 2—dimensions (geometry); 3— country rock (type); 4—faulting, folding, and fracturing; 5—alteration of ore and rock; 6—type of mineralization; and 7—geological factors determining mining method (summary). Of these factors only one yielded results that can be defined from available data in a quantitative manner, i.e., dimensions of the deposit. These are the most reliable guides that can be used in selection of suitable mining methods. They are, in general, the properties of geologic structure most difficult to evaluate by studies of models, pho-toelastic studies, and other laboratory methods, all of which are at present more limited in their applications than the geologic method. Application of geology has proved a reliable guide in other phases
Citation
APA:
(1955) Mining - Relationship of Geology to Underground Mining MethodsMLA: Mining - Relationship of Geology to Underground Mining Methods. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.