Minerals Beneficiation - Progeny in Comminution

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 162 KB
- Publication Date:
- Jan 1, 1952
Abstract
MANY studies of comminution have been made to ascertain the size distribution of the product and to evaluate the work of comminution in the light of the size distributions of the feed and product. Up to now, these studies have been essentially statistical in character, that is, a certain lot of feed was subjected to comminution in some specified way, and the aggregate product was fractionated into sizes, thereby losing all knowledge of individual relationship of feed to product pieces. Radioactive tracers offer a means to do something in this respect which could not be done before, namely, to follow the rupturing of some particular piece in its normal environment of other pieces. That is, it permits going beyond the usual statistical limitations of size distribution studies to what may be termed a personalized or individualized study. The purpose of this paper is to present some preliminary experiments conducted with this tool. The method employed was to mark radioactively some constituent of a feed. It is possible, of course, to consider the preparation of two lots of material of which one is radioactive and the other is not, and to blend the two ahead of the comminuting step; but to do so is open to the objection that the two preparations may not be identical. Therefore a technique has been chosen that removes this objection by merely taking out a size fraction of a comminution feed, rendering that fraction radioactive by exposure to a neutron flux, and then by returning it to Table I. Size Distribution of Offspring Albite Particles Originally 28/35 Mesh and in Admixture with Other Sizes After Grinding 2 min in a Steel Ball Mill Specific Activity ' Cumu- Corrected Distrl- latlve Size for Back- butlon In Distri- Fractlon ground, Weight, Product, button, of Product, cpm/gm g Pctb Pct Mesh (A). (W) (P) (ZP) + 28 0 56.0 0 100.1 28/35 62.6 54.0 24.8 75.3 35/48 62.8 59.4 27.7 47.6 48/65 41.1 53.0 16.2 31.4 65/100 29.6 45.7 10.2 21.2 100/150 23.7 37.0 6.6 14.6 150/200 23.3 25.1 4.4 10.2 200/270 20.1 19.0 2.9 7.3 270/400 17.8 21.2 2.9 4.4 -400 22.9 25.2 4.4 — 100.1 a These activity determinations were made in rapid succession in the order given. The specific activity (Ao) of the active 28/35 mesh fraction of the feed was measured at the beginning, after the measurement on the 65/100 mesh size fraction of the product, and; The end. The decay-corrected activities at those times were 246.7, 241.0. and 236.9 cpm per gm. The weight (W0) of the active 28/35 mesh fraction in the feed was 55.0. b Example of calculation for P in the 65/100 mesh oroduct frac- A W tion; A = 29.6, W = 45.7, Ao = 242.7, Wo = 55.0: P = — x — Ao Wo = 0.102 = 10.2 pet. the remainder of the charge for the comminution experiment. A relatively simple procedure was developed by which albite, containing sodium, was activated in the M.I.T. cyclotron. The cyclotron makes highspeed deuterons which impinge on a beryllium target, thereby producing a concentrated neutron flux. The mineral was exposed to this flux for 2 hr. This treatment changed enough of the sodium to sodium 24 (14.8 hr half-life, 1.4 mev ß) as to make detection and measurement easy. The nuclear reactions taking place were: 11Na23 (n,?) 11Na24 (irradiation) 11Na24 ß,?,? 12Mg24 (decay) The detailed technique of the experimentation was as follows: 40 kg of hand-sorted, lump albite were crushed to pass 10 mesh. After careful mixing of the lot, a screen analysis was made. The whole lot of material was fractionated on standard Tyler screens from 14 down to 200 mesh. Samples for experiments were compounded from these fractions in accordance with the screen analysis. When it was desired to make an experiment in which, for example, the 28/35 mesh size fraction was to be studied, the blend of size fractions was made as indicated above, except that the 28/35 mesh size fraction was added only after irradiation in the cyclotron. The blended charge containing the activated albite was ground for 2 min in a laboratory ball mill with a steel ball charge of controlled size distribution. The ground product was carefully sized on a set of Tyler screens in a Ro-tap. Each size was analyzed for radioactivity by the use of an end-window Geiger-Mueller counter and standard scaling circuit. This analysis was carried out in detail as follows: a 20-g sample was placed in a Petri dish, packed carefully to obtain reproducible geometric distribution with reference to the Geiger-Mueller tube, and the activity was counted for a 2-min period. Several determinations of the activity of the active size fraction in the feed were made at various times to establish the decay in activity with time. Linear interpolation was used to evaluate the activity that the active size fraction in the feed would have had at any given instant. The ratio of the observed activity in a size fraction of the product to the activity that the active size fraction in the feed would have had at the same time gives the fraction in the product size that came from the irradiated size in the feed. The general formula for finding the distribution, P, of a specific individual size fraction in the feed
Citation
APA:
(1952) Minerals Beneficiation - Progeny in ComminutionMLA: Minerals Beneficiation - Progeny in Comminution. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.