Minerals Beneficiation - Ferrograde Concentrates from Arkansas Manganiferous Limestone

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 320 KB
- Publication Date:
- Jan 1, 1960
Abstract
Normally the U. S. produces less than 10 pct of its annual manganese requirement. About 95 pct of domestic consumption is used by the steel industry.' The strategic and critical nature of manganese has been recognized by its inclusion in the national stockpile and by intensified research directed toward cataloging and evaluating domestic manganiferous deposits. The USBM has participated in these activities for many years with field and laboratory studies to assess the extent and potential utilization of domestic manganese ores. One area of particular interest is in the vinicity of Batesville, Ark., where deposits have been mined since 1849 for both manganese and ferruginous manganese ores. Production is centered in Independence County, but deposits are also found in Sharp, Izard, and Stone counties in north-central Arkansas. Miser has described the geology and manganese mineralization in some detail.'. * "he rocks of the area are sedimentary, consisting of sandstone, limestone, shale, and chert. The two formations of greatest importance,' Fernvale limestone and Cason shale, are host rocks of the primary manganese mineralization. Through 1955 the district produced some 230,000 long tons of manganese ore (35 pct Mn or more) and 236,000 tons of ferruginous manganese (10 to 35 pct Mn).5 Most of the ore has been mined from deposits of manganese oxides in residual clays resulting from weathering of the two formations noted above. Concentration methods have been primitive, consisting for the most part of washing. hand picking, and jigging. A significant accomplishment in the district in recent years was the USBM recognition and investigation of the huge manganese potential represented by unaltered Fernvale limestone. systematic reconnaissance of manganiferous limestone and other occurrences has been in progress since 1953 to delineate the extent and tonnage of manganiferous materials. Results of that survey have appeared in two recent publications,1-5 which ascribe to the district an inferred reserve of 166 million long dry tons at a grade of 5 to 6 pct Mn. Most of this was mancaniferous limestone with an estimated content of 5 pct Mn. Specifications: Beneficiation was carried out on a group of manganiferous limestones to develop a way to recover commercial-grade concentrate from this extensive resource. The following chemical specifications were established by the GSA for metallurgical manganese ore acceptable for delivery to the national stockpile: Size specifications were not considered, as it was assumed that the concentrates could be pelletized or sintered. Manganiferous Limestones: Of the 11 samples tested to date, six were taken by cutting vertical channels across beds of limestone outcrops. Diamond drilling through overlying barren chert into unex-posed limestone provided four samples, and the last was a churn drill sample. In general, the samples were dlrk, fossiliferous limestone containing small amounts of braunite, hausmannite, rhodochrosite, massive and micaceous iron and manganese silicates, quartz, barite, and glauconite. The braunite and other manganese oxides partly to completely replaced some of the calcite and fossil material. The calcite was generously stained with mangenese and iron oxides. Phosphorus was present in all samples as collophanite grains, calcium phosphate fossil replacements. or an unidentified manganese-bearing carbonate. The difficulty in separating this complex array of minerals was further complicated by a very intimate association. Although some manganese grains as large as Ik in. were noted, grinding to subsieve sizes would have been necessary to liberate the components. Figs. 1 and 2 are micrographs, at X100, of typical polished sections in which white areas are manganese. gray is gangue, and black areas are surface depressions. By comparison with the 100 mesh opening, it is seen that some of the grains are coarse enough to respond, perhaps to tabling or flotation, but many are obviously beyond the scope of ohysical processing. Partial chemical analyses of the eight samples that were ultimately amenable to concentration are presented in Table 1. BENEFlClATlON RESEARCH Tabling: To take advantage of the presence of sand-size grains, both jigging and tabling were considered at the outset. Jigging was largely ineffective, but tabling achieved a partial recovery from most samples. As an example, the surface material from Baxter Hill was crushed to —28 mesh, hydraulically classified, and the coarsest spigot fraction was tabled to yield a concentrate, middling. and tailing. The latter two were reground to pass 48 mesh, combined with the primary fines, re-classified, and retabled. The middling and tailing were again ground, this time to pass 150 mesh, and deslimed at 20µ in a 3-in. hydraulic cyclone. The cyclone underflow was returned to the table to reclaim a small amount of high-grade manganese. An interesting facet of the gravity concentration developed on certain samples in which braunite was the principal manganese constituent. Since braunite has a Mohs hardness of 6 to 6.5, while the host rock, limestone. is only 3, a differential size reduction took place during crushing, and the
Citation
APA:
(1960) Minerals Beneficiation - Ferrograde Concentrates from Arkansas Manganiferous LimestoneMLA: Minerals Beneficiation - Ferrograde Concentrates from Arkansas Manganiferous Limestone. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.