Minerals Beneficiation - Design Development of Crushing Cavities

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. M. Zoerb
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
208 KB
Publication Date:
Jan 1, 1954

Abstract

Based on the belief that operating details are a definite contributing factor to major economies, this paper traces the development of crushing cavity design in Symons cone crushers to attain maximum liner utilization. Wear rates are analyzed and compared in this presentation and drawings illustrate succeeding design changes. IN these times of rising labor and material costs, it has become more and more necessary that attention be paid to some operating details which, in their obscurity, may he the key to major economies. Liner wear in crushing cavities of secondary and tertiary crushers can become an appreciable cost item when the material to be crushed is hard and abrasive. This item of cost not only includes the value of the crushing members, but also more intangible costs such as labor and lost production due to more frequent replacement. The variables which are encountered in ores and minerals to be reduced; the design of plant and machine application; the sizes, shape, and fineness, characteristics of the crushed product; the moisture; hardness; friability; and abrasiveness of the material to be crushed are all influencing factors which must be taken into consideration in the selection of a crusher, and particularly in the design of crushing cavity and liners to be used in a crusher. Through a research program undertaken in cooperation with many operators of Symons cone crushers a new approach to crusher cavity design was made, resulting in the development of liners for specific operations which showed: 1—maximum utilization, as high as 70 to 80 pct of original weight of metal, and 2— maximum capacity of unit during the greater portion of its life. It has been found that liners so designed for a given operation will show added economies in power consumption, maintenance, and general wear and tear on the crushing unit. Initial work in the so-called tailoring of crushing cavitles was begun on the tertiary or fine crushing units where as a rule reduction ratios were low, varying from 3 to 6. Parallel or sizing zones in the lower portion of the crushing cavity were too long, resulting in a tendency to pack. It was found that very little additional crushing was done in the parallel zone after the initial impact in that zone and that a relatively small amount of' additional crushing was done by attrition, which required very careful feed control. A small amount of over-feeding would result in packing which not only consumed power but caused unnecessary liner wear as well. The illustrations which follow in this discussion will show only contours of crushing cavities, and for purposes of simplification the cavities will be considered only in their closed position. The first step, therefore. was to reduce the sizing zone to a minimum. This was done by removing the lower portion of the liner as shown in Fig. 1. The result of the change was a saving of 15 to 20 pct in liner cost, less power consumption, with no change in capacity. This change in design, while an improvement, did not go far enough. As wear took place, the change in the liner was not uniform throughout its entire length, resulting in a restriction of the feed opening and thereby loss of capacity. Furthermore, progressive wear of the liner had the effect of lengthening the parallel zone until finally the entire crushing cavity was all parallel zone, see Fig. 2. It is obvious from the reduced feed opening of the worn liner that the ability of the machine to receive material is lessened considerably. Furthermore, the long parallel zone with its worn, irregular profile did not operate at its highest efficiency. The first attempt to overcome this difficulty was carried out on a 5 1/2-ft crusher installed in a plant producing roofing granules. The material being crushed was a very hard graywacke and the crusher was closed-circuited with a screen having .232-in. slotted openings. A radical change in contour was developed, as illustrated in Fig. 3. Equal wear lines on both concave and mantle are designated 1, 2, 3, etc. The method of development of this contour is as follows: Since adjustment for wear is vertical, corresponding intersections of wear lines and vertical lines developed concave and mantle contours which maintained equal but lengthening wear surfaces in the parallel zone. The ideal contour, of course, is one in which the length of the parallel zone remains constant, but because of present foundry practice and heat treating characteristics this is impossible.
Citation

APA: H. M. Zoerb  (1954)  Minerals Beneficiation - Design Development of Crushing Cavities

MLA: H. M. Zoerb Minerals Beneficiation - Design Development of Crushing Cavities. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account