Minerals Beneficiation - Behavior of Mineral Particles in Electrostatic Separation - Discussion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Shiou-Chuan Sun J. D. Morgan R. F. Wesner
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
295 KB
Publication Date:
Jan 1, 1951

Abstract

0. C. Ralston and F. Fraas—Dr. Sun and associates have presented an interesting paper not all of which is comprehended by us. The data assembled measure the deflections of particles in an electrostatic field as a function of a number of independent variables and some dependent variables that are not sharply differentiated. These data are all based on a Johnson type machine of definite, well-described geometry, something not often done in electrostatic separation literature. One new fact brought out by this technique is the effect of coal dust on admixed pyrite and quartz. The effects are opposite in character, as should be expected and we do not agree with the authors that these effects are negligible. Fraas' also used a multiple cell "distribution analyzer" and gives in fig. 5 of his paper a straight line plot with no humps or curves. This is not necessarily at variance with Sun's results because Fraas used a larger gap between electrodes and had no evidence of particles adhering to or dropping off the charged electrode. The section of Sun's paper on effect of surface conductivity contains a speculation that the dielectric constant "represents more or less the electrical conductance of the bulk body instead of the surface of the mineral particles." A simple picture of the meaning of the dielectric constant is that it is the specific inductive capacity of a dielectric when used as the dielectric between the plates of a condenser. It is at once evident that the above speculation confuses capacity with conductance—two definitely independent variables. We ask the authors to state in what group or subdivision their garnet belongs; what method and units were used in calculating the data of col. A, table I and their meaning; what was the temperature of the carrier roll and, finally, has any effort been made to investigate the effects of particle shape on distribution in the electrostatic field? S. B. Hudson—I have read this article with great interest. We have been engaged in research work on the principles of electrostatic separation in this laboratory for some time now, and our findings agree with those of the authors in many respects. The article shows evidence of careful and valuable research in the field of electrostatic separation. A "distribution analyser," very similar to that described in an earlier article by one of the authors," was incorporated in an inclined plate-type electrostatic separator designed and built in the Melbourne University laboratory in 1948 for investigation purposes.22 The actual splitting edges were machined from y! in. per-spex, and the paper hoppers were supported on linen thread immediately below the perspex dividers. These dividers fitted into machined slots in a framework to give accurate Yz-in. spacings. The hoppers (staggered) fed directly into a rack of test tubes, which is supported on a vertical pantograph arrangement. The rack was positioned with guides on the horizontal pantograph stand, and this ensured positive alignment when replacing the rack after making weighings. In later work, when much heavier feed rates were used, of the order of 30 to 40 Ib per in. per hr a rack fitted with rectangular metal containers and similarly aligned was used. Some work was done here on comparing the distributions of minerals when passed separately and when passed as a mixture, and it was found that there was quite an appreciable difference in the two results.= However, in our separator the particles do not pass down the plate in a single layer, and this difference is probably caused by collisions of one mineral particles with the other mineral particles. In most of the investigational work here, the change of the center point of the distribution is measured to establish the effect of a variable, such as voltage. Two minerals (zircon and rutile) have been studied rather exhaustively, and it was found that their distributions are very nearly normal. Owing to the sharpness of the distribution curves, the usual method of obtaining the mean or median was inaccurate, and was not used; instead the mean (also the median), calculated on the assumption of a normal distribution, was used to locate the center point of each distribution and proved satisfactory. The effect of polarity becomes very apparent in the plate-type separator where frictional charges play a very important part when using highly resistive minerals such as zircon. With rutile, a comparatively conductive mineral, polarity of the electrode has little effect. On the other hand, the magnitude of the voltage has a far greater effect on conductive than on resistive minerals. Shiou-Chuan Sun (authors' reply)—Thanks are extended to Drs. Ralston and Fraas for their keen interest in this paper. Their questions concerning coal dust,
Citation

APA: Shiou-Chuan Sun J. D. Morgan R. F. Wesner  (1951)  Minerals Beneficiation - Behavior of Mineral Particles in Electrostatic Separation - Discussion

MLA: Shiou-Chuan Sun J. D. Morgan R. F. Wesner Minerals Beneficiation - Behavior of Mineral Particles in Electrostatic Separation - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account