Iron and Steel Division - The Wustite Phase in Partially Reduced Hematite

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 468 KB
- Publication Date:
- Jan 1, 1955
Abstract
THE layered structure of partially reduced iron ore was described in a previous paper.' Reduction by hydrogen was found to take place at well-defined interfaces between layers of the solid phases. In the present investigation, a detailed study was made of the wiistite phase that had formed during the partial reduction of a cylindrical compact of chemically pure hematite. An unusually wide band of wiistite permitted a rather detailed study of this phase. The specimen was made from Baker's C.P. hematite in the form of a cylinder 1.5 cm in diameter and 1.8 cm long. A dense ore structure with about 6 pct porosity was attained by heating the specimen in air at 1100°C for 3 hr. To confine reduction to the top surface, a ceramic coating was applied to the bottom and sides of the cylindrical compact. The specimen was then partially reduced in hydrogen at 850°C and subjected to a coordinated sequence of macro-, micro-, and X-ray examinations. A section of the partially reduced cylinder is shown in the macrograph, Fig. 1. Four layers consisting of metallic iron, wustite, magnetite, and unreduced hematite are clearly shown. The effort to force reduction to proceed downward in topochemi-cal fashion was only partly successful, as some reduction occurred along one side and bottom of the cylinder. A rather wide layer of dark wustite phase had formed, however, and permitted sampling for X-ray studies as indicated. To supplement previous work and to study the wustite layer in more detail, ten separate layers were removed for X-ray examination. Broad and diffuse patterns were obtained with the as-filed powders, especially with those of iron and wiistite, and the condition indicated a cold-working and variable composition effect within the respective layers. This condition was corrected by annealing the entire series of powders at an appropriate temperature. For the annealing treatment, the ten powder samples were wrapped in silver foil, sealed under vacuum in small quartz tubes, and heated at 750°C for 16 hr. The specimens were then drastically quenched in cold water to preserve the annealed condition. These annealed specimens were X-rayed in turn and the compiled patterns are shown in Fig. 2. The standard patterns for iron and its oxides have been interjected at appropriate positions for purposes of comparison and phase identification. All of the patterns obtained were clearcut and concise so that positive identifications could be made for all of the phases. The outermost layers A, B, and C were composed almost entirely of iron with a small amount of wiistite being detectable at the X-ray limit of phase detection. Layer D from the iron-wustite interface showed both of these phases. The next four layers E, F, G, and H were all in the dark phase band which had been tentatively identified as wustite by the macroexamination, Fig. 1. The diffraction data with their single-phase patterns of wiistite for these layers checked the visual evidence. Continuing the X-ray analyses after layer H, the macrograph (Fig. 1) shows that layer I came largely from the magnetite zone but included some fringes of the wiistite-magnetite interface. The diffraction pattern for the sample confirmed this observation. Layer J came from the unreduced core of the specimen and its diffraction pattern indicated a preponderance of hematite phase. The reduction behavior of synthetic compacts has thus been found to be similar to natural dense iron ore. The previous results were supplemented with measurements of the diffraction films and calculations of the respective unit parameters. These X-ray data are summarized in Table I and offer some interesting correlations as to the compositions of the various phases undergoing reduction. The iron layers that were analyzed gave lattice parameters close to that of pure iron at 2.8664A. Evidently this iron was present in layers A through D as a pure phase with little or no oxygen dissolved in its lattice. With the wiistite layers an entirely different situation prevailed in that there was a definite and
Citation
APA:
(1955) Iron and Steel Division - The Wustite Phase in Partially Reduced HematiteMLA: Iron and Steel Division - The Wustite Phase in Partially Reduced Hematite. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.