Iron and Steel Division - The Interaction of Liquid Steel with Ladle Refractories

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. B. Post G. V. Luerssen
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
12
File Size:
866 KB
Publication Date:
Jan 1, 1950

Abstract

It is generally recognized that non-metallic inclusions in steel come from two principal sources. First are the chemical reactions in the furnace, or in subsequent deoxidation, resulting in slag which does not free itself from the metal. Much information has been published concerning these chemical reactions and their control through proper attention to slag viscosity, composition of deoxidizers, and other qualities. The studies of this subject by C. H. Herty, Jr. and others through the medium of physical chemistry have yielded much information for the steelmaker. The second source is erosion of ladle refractories, such as lining brick, stoppers, nozzles and runners, causing entrapped particles of globules of fluxed silicate material. In contrast with the large amount of information available on the first source, relatively little has been published on the subject of erosion which, in the case of basic electric melted steel, is the principal source of nonmetallics. This is probably due to the fact that the problem was assumed to be one of simple mechanical erosion, which could be solved primarily by modification of ladle practices. Good improvements have been made by elimination of slurries in the ladle, better ladle and runner refractories, and more attention to pouring temperatures. It is doubtful, however, that this problem has been recognized in its true light since it is not one of simple mechanical erosion but rather one of chemical reaction between the metal and the refractories; and in this sense is as much a problem of physical chemistry as the reactions involved in the actual steelmaking process. The influence of ladle refractories on the resulting cleanness of steels was early recognized by A. McCancel who examined large inclusions in steels made by both acid and basic practices. His chemical analyses showed the large influence exerted by the manganese content of the steel on erosion of the ladle and nozzles used in those days. The presence of MnO in such inclusions led McCance to the hypothesis that both basic and acid steels react chemically with the ladle refractories so that small globules of fluxed refractories are carried in the stream into the molds. This early work of McCance was checked by one of the present authors on basic electric bearing-steel, and it was found that on steels containing as low as 0.40 pct manganese the fluxed surface of the ladle lining after delivering such a heat showed as high as 25 pct MnO by actual analysis. Furthermore, by lowering the manganese content of the steel to 0.20 pct, ladle erosion was decreased with a corresponding decrease in silicate inclusions in the steel. Limitations placed on the manganese content for the required inherent properties made it impossible to pursue this line further, and subsequent attention was concentrated on improved ladle refractories, care in keeping the ladle clean and free from loose refractories up to the time of tapping, and pouring the steel at optimum temperature. Our study of the chemical reactions at the metal-brick interface between steel and ladle refractories was revived in 1939 as a result of an experimental observation made on the cleanness of alloy steels of the SAE types. This observation showed that the relative cleanness of such steels made in basic electric arc furnaces of 12 ton capacity and poured in ingots ranging from 1100 to 2200 lb weight was determined to a large extent by the ratio of the manganese and silicon contents, provided other steelmaking variables such as tapping temperature, pouring temperature, pouring time, amount of aluminum added for grain size control, and degree of deoxidation in the furnace were kept reasonably constant. Detailed studies made on the deoxidation and slag practice during the refining period of basic electric furnace practice showed that these two variables exerted some influence on the resulting cleanness of steel in the form of bars and forgings. The important variable, the manganese-silicon balance, was not apparent until heats were made in succession by the best furnace practice kept under fairly rigid metallurgical control. Another observation pertinent to this work concerned the similarity in the microscope of slag particles causing magnaflux or step-down indications in subsequent rolled bars, and the patches of slag frequently seen on the surface of ingots. These patches are generally believed to come from the glassy metal-brick interface in the ladle and represent an entrapment of such glass (both from the ladle brick and nozzle) in the metal as it flows over the refractories in the neighborhood of the nozzle. These glassy particles are carried down into the mold with the liquid steel, and gradually coalesce into a slag "button" which floats on the surface of the steel as it rises in the molds. Periodically the button is washed to the side of the ingot where it is trapped between the surface of the ingot and the mold, later appearing as a slag patch on the surface of the ingot after stripping. Even though most of the small glassy particles coalesce into a slag button while the ingot is being poured, it is logical to suspect this step in the steelmaking process as being a source of slag lines large enough to cause trouble
Citation

APA: C. B. Post G. V. Luerssen  (1950)  Iron and Steel Division - The Interaction of Liquid Steel with Ladle Refractories

MLA: C. B. Post G. V. Luerssen Iron and Steel Division - The Interaction of Liquid Steel with Ladle Refractories. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account