Iron and Steel Division - Establishing Soaking Pit Schedules from Mill Loads

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. D. Hindson J. Sibakin
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
623 KB
Publication Date:
Jan 1, 1956

Abstract

In order to devise a practicable soaking pit schedule for use at The Steel Co. of Canada Ltd.'s Hamilton Works, soaking pit heating temperatures, sooking times, pit capacity, and safe maximum mill drafts were correlated with fluctuations in the current or load of the bloom mill driving motor. Other variables such as total delays in the pit, rolling schedules, mill delays, and track times were also investigated. IN order to show an easily applied and accurate means of establishing soaking pit heating temperatures, soaking times, pit capacity, and safe maximum mill drafts, these various factors are correlated herein with fluctuations in the current or load of the bloom mill driving motor. Rolling practices have a considerable influence on the production capacity of a blooming mill. The maximum values of the torque, in particular, are of importance, since even instantaneous current peaks lead to the tripping of the motor by the overload relay and result in loss of mill time. The establishment of safe maximum drafts and accelerations for ingots of different sizes and of a soaking pit practice which would ensure a consistent and satisfactory plasticity of the metal is of considerable importance for increasing the efficiency of both the blooming mill and the soaking pits. The Bloom Mill Dept. of the Hamilton Works, The Steel Co. of Canada Ltd., is equipped with one 44 in. mill driven by a 7000 hp motor with the setting of the overload relay at 22.0 ka. The speed of rotation of the motor is regulated after the Ward-Leonard system. There are three basic speeds of 9.5, 28, and 47 rpm and a further possibility of increasing the speed by weakening the field. This last possibility is hardly ever used during practical operations. The rolling program of the blooming mill is varied, both in the size of the ingots to be handled and in the steel grades. The total tonnage handled by the mill is about 2,000,000 ingot tons per year. At the time of the investigation, the Bloom Mill Dept. was equipped with 22 soaking pits (6 regenerative, 14 bottom-fired, and 2 one-way top-fired pits) with a total bottom area of 2770 sq ft. The pits are fired with a blast furnace-coke oven gas mixture having a calorific value of 155 Btu per cu ft. The foregoing figures show that the production program was such as to impose the necessity of a most efficient usage of the available equipment. For this purpose, the operations of the 44 in. mill and of the soaking pits were investigated, and the results of the investigation were used as a basis for a revised soaking pit schedule and drafting practice. The plasticity of an ingot of a certain chemical composition when being rolled is determined mainly by the following factors: I—the ingot size, both thickness and width; 2—the length of the gas soak; and 3—the surface temperature. The first two factors determine the uniformity of the temperature distribution over the cross-section of an ingot. The third factor introduces the level of the heating of an ingot. The torque produced by an ingot being rolled is determined by the area of the metal displaced, its plasticity, and acceleration values. On the other hand, with shunt motors the torque is determined by the current. This can be assumed to be correct with only a small degree of error for compound motors with a relatively small effect of the series windings as long as the velocity is not regulated by weakening the field. Since the spread is relatively unimportant when compared to the width of an ingot and since it is also reduced several times during rolling by edging passes, the draft alone and not the area of the metal displaced may be taken into consideration with ingots of a similar size. It is therefore possible to determine the main features of the heating and drafting of an ingot by measuring the current and acceleration of the mill motor. After the acceleration has been taken into account, the amount of current will be an indication of how the motor responds to a heating and/or drafting practice and these practices can be adjusted in order to get the desired result. As peak currents are more likely when heavier ingots are rolled, the rolling of plate and slab ingots was investigated. Conditions prevailing when smaller ingots are rolled can be deduced from the results obtained on heavier ingots. All measurements were made when plain carbon grades under 0.15 pct C were rolled. The motor current, the voltage across the armature, and the rpm were recorded simultaneously on synchronized charts, Fig. 1, which moved with the speed of 6 in. per min. Each draft was recorded by a special observer. The rpm curve made it possible to establish the acceleration at any given moment. For purposes of correlation, the maximum current during a pass and the corresponding acceleration were used. The charts made it possible to establish the position of the roller's lever at any given moment as well as the total time of a pass. The slab ingots were divided into three groups (28x35, 28x45, and 27Mx53 in. ingots) and each group was investigated separately. Since they account for most of the current peaks, only flat passes were used for purposes of correlation, a total of 1373 having been investigated.
Citation

APA: R. D. Hindson J. Sibakin  (1956)  Iron and Steel Division - Establishing Soaking Pit Schedules from Mill Loads

MLA: R. D. Hindson J. Sibakin Iron and Steel Division - Establishing Soaking Pit Schedules from Mill Loads. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account