Iron and Steel Division - Effect of Rare-Earth Additions on Some Stainless Steel Melting Variables

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 360 KB
- Publication Date:
- Jan 1, 1961
Abstract
Rare-earth additions were made to laboratory heats of Type 310 stainless to observe their effect on as-cast ingot structure, nitrogen and sulfur contents, and nonmetallic inclusions. Lanthanum had a grain-refining effect in 30-lb ingots, but results with 200-lb ingots were inconsistent. Cerium, lanthanum, and misch metal lowered the sulfur content when the sulfur exceeded 0.015 pct and the rare-earth addition was greater than 0.1 pct. The rare-eardh content in the metal dropped very rapidly within the first few minutes after the addition. The size, shape, and distribution of nonmetallic inclusions was not changed in 30-lb ingots, but changes were noticed in larger ingots. RARE-earth* additions have been made to austenitic Cr-Ni and Cr-Mn steels to improve their hot workability. The high alloy content of these steels often results in a considerable resistance to deformation and inherent hot shortness at rolling temperatures, particularly in larger ingots. Rare earths in the metallic, oxide, or halide form are usually added to the steel in the ladle after deoxidation although they can be added in the furnace prior to tap or in the molds during teeming. The literature- indicates that the effects of rare-earth treatments on these stainless steels are not consistent, and sometimes even contradictory. Since no mechanism has been presented which satisfactorily accounts for the claimed improvements, the effects of rare earths are a qualitative matter. The work described in this paper was initiated to expand the knowledge of the effects of rare-earth additions on melting variables such as ingot structure, chemical analysis, and nonmetallic inclusions. REVIEW OF LITERATURE Ingot Structure—Rare-earth additions to stainless steels have been reported to cause a change in primary ingot structure in that there are fewer coarse columnar grains. However, the results are inconsistent. While one investigation1 has shown a large reduction in coarse columnar crystals, another2 has been unable to observe this effect, particularly when small ingots were poured. Post and coworkers3 observed ingot structures for a number of years and found that the columnar type of structure is not definitely a cause of any particular trouble in rolling or hammering, provided the alloy is ductile. Knapp and Bolkcom4 found rare-earth additions to be quite effective in preventing grain coarsening in Type 310 stainless steel. Chemical Analysis—Many effects of rare-earth treatment on chemical analysis have been claimed in the literature. Russell5 observed that some sulfur is removed by rare-earth metals, and that a high initial sulfur content improved the efficiency of sulfur removal. Lillieqvist and Mickelson6 report that rare-earth treatment causes sulfur removal in basic open-hearth furnaces, but not in basic lined induction furnaces. Knapp and Bolkcom found no sulfur removal in acid open-hearth and acid electric furnaces, probably because the acid slag can not retain sul-fides. snellmann7 showed that sulfur could be lowered apprecfably with rare-earth additions; however, a sulfur reversion occurred with time. Langenberg and chipman8 studied the reaction CeS(s) = Ce(in Fe) + S(in Fe), and found the solubilit product [%Ce] [%S] equal to (1.5 + 0.5) X 10-3'at 1600°C. Results in 17 Cr-9 Ni stainless were about the same as those in iron. Beaver2 treated chromium-nickel steels with 0.3 pct misch metal and observed some reduction in the oxygen content. He also noted an inconsistent but beneficial effect of rare earths when tramp elements were present in amounts sufficient to cause difficulty in hot working. It is not known whether rare earths reduce the content of the tramp elements or change the form in which these elements appear in the final structure. No quantitative data are available concerning a possible effect of rare-earth treatment on hydrogen and nitrogen contents. However, Schwartzbart and sheehan9 stated that additions of rare earths had no effect on impact properties when the nitrogen content was low (0.006 pct), but served to counteract the adverse effects of high nitrogen content (0.030 pct) on these properties. Knapp and Bolkcom4 analyzed open-hearth heats in the treated and untreated conditions and found the nitrogen content (0.006 pct) to be unaffected. These two results lead to the speculation that rare-earth additions can reduce the nitrogen content to a certain level. Decker and coworkers10 have observed that small amounts of boron or zirconium, picked up from magnesia or zirconia crucibles, increased high-tem-
Citation
APA:
(1961) Iron and Steel Division - Effect of Rare-Earth Additions on Some Stainless Steel Melting VariablesMLA: Iron and Steel Division - Effect of Rare-Earth Additions on Some Stainless Steel Melting Variables. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.