Iron and Steel Division - Application of the ARL Quantometer to Production Control in a Steel Mill

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. C. Brown
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
320 KB
Publication Date:
Jan 1, 1955

Abstract

SINCE 1934 the steel industry has been utilizing the spectrograph for supplementing wet chemical analysis in the production control of electric and open hearth furnaces. This means of control made great strides during the war years because of the general acceptance of the spectrograph and the increased emphasis that was placed on rapid control methods. However, in the post war era, with the demand still on increased production, it became apparent that a still more rapid and economical means of production control was needed. Since the spectrograph had been used mostly in the analysis of low alloying and residual elements, it also became apparent that equipment was needed to extend the spectrographic technique to the analysis of the high alloying elements in stainless steel. For these reasons, companies manufacturing spectrographic equipment were prompted to start development work on direct reading instruments. In June 1949, the Applied Research Laboratories of Glendale, Calif., announced that a direct method of spectrochemical analysis for stainless type steels had been developed. This paper will describe the use of the Applied Research Laboratories Production Control Quantometer in the quantitative control of stainless, silicon, and plain carbon steels being made at the Butler Pennsylvania Div. of the Armco Steel Corp. The Armco Butler Div. has one 70-ton electric furnace and six 150-ton open hearth furnaces. The electric furnace is employed in the making of all types of stainless steel and the open hearth furnaces are used for the production of silicon, wheel, and plain carbon steels. The ARL quantometer was purchased primarily for the purpose of controlling the steelmaking in the electric furnace, but its use has been extended for the analysis of final tests (ladle tests) on a number of different types of stainless, silicon, and plain carbon steels. Because of this additional work by the quantometer, substantial savings in manpower and time have been realized by the laboratory. In the analysis of a set of preliminary tests from the stainless steel furnace, approximately 40 min in laboratory time are saved due to quantometric analyses. Despite the fact that more specialty grades of stainless steel are being made in the electric furnace, the average tons per hour have been increased since the quantometer was put into operation. Specialty grades require more furnace time than regular commodity grades of stainless steel. The installation of the ARL production control quantometer was completed on March 13, 1952. By May 1, 1952, the instrument was calibrated for nickel, chromium, manganese, silicon, and molybdenum, which are the elements necessary for the production control of the stainless steel furnace. Within the following month, training of personnel on the quantometer was achieved and a study of the accuracy of the instrument showed that the results obtained were sufficiently accurate for control purposes. Therefore, on June 11, 1952, the quantometer was placed on production control for all types of stainless steels. Starting September 11, 1952, the instrument was gradually placed on ladle analysis (final tests) as the analytical curves were refined and additional curves were drawn. The quantometer has been relatively free of breakdowns since placing it on production control. The samples from only one stainless steel heat have had to be analyzed by wet chemistry because of instrument trouble. The previously existing heat-time record was also bettered by 15 min on a commodity grade of 18-8 stainless steel. Scope of Control In general, the quantometer determines all elements necessary for the production control of all types of stainless steel heats and for the ladle analysis of various types of stainless steel heats. It is also used in reporting final results for silicon, manganese, chromium, nickel, molybdenum, tin, copper, and aluminum on all silicon steel grades and manganese, chromium, nickel, molybdenum, tin, and copper on several plain carbon steel grades. Table I shows the elements and the concentration ranges of these elements in the various types of stainless, silicon, and plain carbon steel that are determined on the quantometer. A study of the results obtained on ladle test samples of stainless steel types 410, 430, 430 Ti, 446, 301, 302, 304, 304L, 305, and 17-7 PH will be discussed. Also included in the study are the results obtained on ladle test samples of a number of silicon steels. Apparatus In order to take full advantage of the potentials of the production control quantometer, the unit has been placed in an air-conditioned room with relative humidity control. The temperature is maintained at 73'22°F and the humidity at 45&5 pct. The air conditioning serves as a precaution to minimize the amount of adjustment and calibration needed during operation. It also reduces contaminating fumes and dust and thereby lessens the necessity for maintenance on the equipment. The quantometer is composed of three units: the high precision multisource unit, the 1.5 meter vertical spectrometer, and the console. The source unit supplies excitation conditions varying from spark-like discharges to arc-like discharges. The voltage to the source unit is supplied by a motor-generator
Citation

APA: H. C. Brown  (1955)  Iron and Steel Division - Application of the ARL Quantometer to Production Control in a Steel Mill

MLA: H. C. Brown Iron and Steel Division - Application of the ARL Quantometer to Production Control in a Steel Mill. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account