Iron and Steel Division - Acid Bessemer Oxygen-Steam Process

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. M. Yocom
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
1203 KB
Publication Date:
Jan 1, 1962

Abstract

Blowing acid Bessemer converters with oxygen-steam produces steel of below 0.002 pct N2 content. This method of blowing, combined with a dephosphorizing treatment in the steel ladle, results in low-carbon steels of low nitrogen and low phosphorous (under 0.035 pet) contents, which has physical properties equivalent to open-hearth steels of similar analysis. Using a 50-50 mixture of oxygen and steam, the refinitzg rate is increased 25 pct over blowing with natural air, and scrap charge increased from 3 to 10 pet. Bottom life is normal with proper tuyere area and arrangements, fumes are decreased, yields increased, and hydrogen content is normal. THE acid Bessemer plant at the South Works of Wheeling Steel Corp., consists of two 15-ton bottom blown converters with a monthly capacity of 57,000 N.T. The product of the shop is skelp billets for continuous welded pipe and slabs for ordinary drawing and forming quality sheets. Approximately 50 pct of ingot production is regular Bessemer steel of natural Phos content and the remainder is a dephosphorized grade of steel made by a special treatment of the blown metal as it is poured into the steel ladle. The low Phos grade of steel has certain advantages over the higher Phos grade but since both grades were produced by blowing natural air, the N2 content was in the range of 0.015 pct which limited its application. In 1954 it was decided to explore the possibilities of blowing with a steam-oxygen mixture for the production of steel of both low N2 and low Phos contents. The necessary equipment was installed to operate one converter in this manner and early in 1955 an experimental run of 160 heats was made by blowing with a steam-oxygen blast and excluding natural air entirely. During this period the proper operating techniques were established, such as blast pressures, steam-oxygen mixtures, valves and instrumental control equipment, tuyere arrangement in the bottoms, blowing times and production rates, and a thorough study made of the final steel quality. Also during this experimental period the dephosphorizing practice was improved by the use of a tap hole below the lip of the vessel. This provided a clean separation of the acid converter slag and blown metal which made the dephosphorizing treatment more effective. The results of this experimental run dictated further development of this practice and a second run of 720 heats was made in 1957. The quality features and conversion cost results were in line with expectations and accordingly a 400-ton per day oxygen plant is now being installed. The plant is scheduled for completion in September of this year. This will provide sufficient oxygen to operate both vessels on steam-oxygen blast and delete natural air blowing entirely. The steel will then be below 0.002 pct N2 bar content and the dephosphorized grades will be between 0.015 and 0.040 pct Phos. STEAM-OXYGEN BLOWING The steam for the process is fed to the plant at 220 psig pressure through a 6-in. line. The high-purity oxygen is compressed to 200 psig and conducted through an 8-in. line. The oxygen from the main line is valved down to 100 psig and passed through a steam heated heat exchanger. The heat exchanger is regulated to supply oxygen at 300°F to the steam-oxygen mixing station. It is essential that the incoming oxygen be held at this temperature to avoid condensation of the steam with resulting excessive erosion of the clay tuyeres in the vessel bottom. Oxygen is admitted to the mixing chamber by a 6-in. hydraulically operated valve driven by the ratio control regulator on impulse from the flow of steam. Steam is admitted to the steam-oxygen mixture station through a 2 1/2-in. hydraulically driven valve. The ratio control regulator acts to increase or decrease oxygen input as the steam flow increases or decreases with changing positions of the Blower's control lever. The important point to note here is that steam flow always precedes the oxygen flow as a safety measure. The control valves have sufficient capacity to afford protection should blow pipe trouble develop. A 50-50 mixture for these 15-ton heats demands an oxygen flow of 3800 standard cu ft per min along with 317 lb of steam. The Blower's stations is provided with an indicating blast pressure gage, and indicating steam and oxygen flow meters. Signal and warning lights indicate the valve positions and line pressures. A control room at the real of the Blower's pulpit room houses the ratio control and pressure regulators, as well as the various meter bodies. The hand actuated wheels used to change the conditions are mounted on a panel on the front of the meter control house. The recording steam and oxygen meters used for totalizing and accounting purposes are also mounted on this panel.
Citation

APA: G. M. Yocom  (1962)  Iron and Steel Division - Acid Bessemer Oxygen-Steam Process

MLA: G. M. Yocom Iron and Steel Division - Acid Bessemer Oxygen-Steam Process. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account