Institute of Metals Division - Uranium-Titanium Alloy System (Discussion page 1317)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 568 KB
- Publication Date:
- Jan 1, 1955
Abstract
AN incomplete phase diagram for the U-Ti systern was determined earlier 1 and more recently, a tentative diagram was presented for the uranium-rich end of the system.' In the present re-examination of the whole system of U-Ti alloys, high purity materials were used. Melting stock for the alloys was high purity uranium, containing about 0.09 pct C as the only appreciable impurity, and high purity iodide-process titanium purchased from New Jersey Zinc Co. Both metals were cold rolled to about 1/6 in. thickness, sheared to about I/' in. squares, and cleaned by pickling. The alloys were arc melted under a helium atmosphere in a water-cooled copper crucible. A thoriated-tungsten electrode was used. The furnace chamber was evacuated, then flushed with helium, prior to each melting. It was finally filled with stagnant helium at one atmosphere pressure. Each alloy was remelted three times after the original melting, to insure homogeneity. The alloy button was turned bottom side up before each re-melting operation. Some 22 alloys were examined. Their compositions were spaced at appropriate intervals between 100 pct Ti and 100 pct U. Analyses were made on chips taken after fabrication. The major contaminant was carbon, which varied from 0.03 to 0.08 pct. It appeared in the microstructure as titanium carbide. Alloy compositions were calculated to a carbon-free basis for consideration on the diagram. Tungsten and copper, possible contaminants from the melting operation, were generally less than 100 parts per million each. Fabrication All alloys were forged and rolled to bars approximately V8 in. square. They were clad either in SAE 1020 steel or in a 5 pct Cr-3 pct Al-Ti-base alloy, depending on the fabrication temperature. A temperature of 1800°F (980°C) was used for alloys near the compound composition. This necessitated using the titanium-base alloy, since iron reacts with titanium at this temperature, producing a low melting alloy. Other alloys were fabricated at 1450°F (790°C), using steel jackets. No iron-titanium reaction occurred at this temperature. The jackets were welded in place in an argon atmosphere. Those alloys sheathed in steel were declad and then reclad between rolling and forging operations. On the other hand, those clad with the titanium alloy were cut to a roughly rectangular shape prior to clading and were then carried through both the forging and rolling operations without opening. Those alloys near the compound composition were found to be cracked when the clading was removed. The cracked materials had been plastically deformed, however, and at least some of the cracking had OCcurred during cooling. Heat Treatment The rolled bars, after being declad and shaped to remove surface contamination, were all given an homogenizing treatment of 160 hr at 2000°F. (Samples were taken for analysis following the declading and shaping operations.) All were heat treated at the same time in one furnace, but each was sealed in a purified argon atmosphere in an individual Vycor glass tube. Argon pressure was such that it was approximately atmospheric at temperature. One end of each tube contained titanium chips and this end was heated to 1200°F (650°C) for 10 min prior to the heat treatment. This purged the atmosphere of residual reactive gases. The balance of the tube was warmed during the purge to liberate adsorbed moisture and gases, which also reacted with the hot chips. The bars were furnace cooled from the homogenization treatment. Specimens of each alloy were water quenched after 2 hr heating at 1000°, 1200°, 1400°, 1600°, 1800°, and 2000°F (540°, 650°, 760°, 870°, 980°, and 1095°C). In addition, some were treated at intermediate temperatures of 1300°, 1500°, and 1700°F (705", 815", and 925°C) and at 2150°F (1175°C). Specimens, about '/s in. cubes, were cut from the bars, sealed in individual Vycor tubes, and heat treated as described. All specimens heat treated at the same temperature were processed together. Samples were quenched by breaking the Vycor tube rapidly under water. Metallographic Examination Specimens were mounted in bakelite and ground wet on 180 grit paper held on a 1750 rpm disk. They were then ground wet by hand, using 240, 400, and 600 grit papers. The rough grinding was continued long enough to get well below the surface. Specimens were mounted separately because of the variation in the rate of etching between alloys. The specimens were polished with rouge on a 4 in., 1725 rpm wheel covered with Miracloth. Alloys on the titanium side of the compound composition were etched with a solution of 2 pct hydrofluoric acid in water saturated with oxalic acid. A few crystals of ferric nitrate were added as a bright -ener. Specimens were immersed 5 sec, polished to remove the etch, then re-etched. With the higher titanium alloys, it was often necessary to start the etch on the polishing wheel, because of the formation of a passive film. In some instances, a plain 2 pct hydrofluoric etch was satisfactory. For the alloys on the uranium side of the compound, a distinction between the compound and the uranium phase developed after standing a short time in air. This could be hastened by the application of heat, such as obtained by placing the specimen on a radiator. A deep etch was necessary to develop details in the uranium-rich phase, such as the Widmanstaetten pattern sometimes obtained by quenching y uranium. A 2 pct hydrofluoric acid solution was used for this deep etching.
Citation
APA:
(1955) Institute of Metals Division - Uranium-Titanium Alloy System (Discussion page 1317)MLA: Institute of Metals Division - Uranium-Titanium Alloy System (Discussion page 1317). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.