Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part II – A Structural Investigation

The American Institute of Mining, Metallurgical, and Petroleum Engineers
O. M. Katz J. Alfred Berger
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
878 KB
Publication Date:
Jan 1, 1965

Abstract

Selected samples of hydrided Zr-Hf alloys were rapidly quenched to voom temperature and exrtrnined metallographically, by X-ray diffraction, and through micro hardness studies to confirm high-temperutuve data Confirming experiments sllowed that there were five phases in this Lernary system: 1) hextrgonal with lattice parameters similar to that of the initia1 Zr-Hf alloy but slightly enlarged due to dissolved hydrogen; 2) fee with properties of a brittle, intermediate, hydride compound; 3) fct with c/a crvoltnd 1.07 and which appeared as a neetilelike precipitale; 4) hexagonal, designated ?, with c/a ratio of 2.37; and 5) orthorhombic, designated X, with a = 4.67, b = 4.49, and c = 5.093 and whose tnicro-st?ruct~ival nppetrl-nnce depcncled o/i, heat lvecrt~r~ent. The tetragonrrl phase never crppeal-erl witkorct the cubic hydricle. Abpecrrtrnce of 0 and A also tlependet on the hafnium content of the zirconium. A previous paper' on the Zr-Hf-H system described the thermochemical data obtained with a high-vacuum, high-sensitivity mirrogravimetric apparatus. This data presented a fairly complete picture of the phase relationships at elevated temperatures. However, it could not establish the actual crystal structures, lattice parameters, or metallographic disposition of the hydride phases. The present complementary study utilizes X-ray powder patterns along with light and electron microscopy to characterize completely the five hydrided phases found in Zr-Hf-H alloys quenched to room temperature. Crystallographic features of the zr-Hf,2,4 zr-H,5-7 and Hf-H8 systems have been summarized in Table I. Designations of a, ß, and ? were retained in the Zr-Hf-H system for the phase regions through which the pressure-composition isotherms always sloped. However, it was not firmly agreed that these were single-phase regions.' In fact, the region designated y always contained a cubic as well as a tetragonal phase after quenching to -196°C. MATERIALS Preparation of the high-purity Zr-Hf alloys has been described.' The four zirconium alloys which were hydrided contained 37 wt pct Hf (23 at. pct), 51 wt pct Hf (37 at. pct), 73 wt pct Hf (58 at. pct), and 91 wt pct Hf (82 at. pct), respectively. These were designated B-2, B-4, B-6, and B-8. Photomicrographs of the initial alloys showed the material to be quite clean as would be expected from the precautions exercised in producing them. However, there were a number of annealing twins but no other subgrain structure. In addition to the four original alloys, fifteen hydrided samples were observed at room temperature. Hydrogen compositions are given at the top of Tables I1 to V. APPARATUS The phases present at elevated temperatures were studied by quenching hydrided samples to room temperature by two different methods, both under vacuum: 1) fast cooling of the sample tubes of the microgravimetric apparatus1'9 with flowing air and 2) rapid quenching into liquid nitrogen. The cooling rate for 1) was 750° to 250°C in 30 sec. Since the microbalance chamber was not designed to permit very rapid cooling of a hydride sample, all liquid-nitrogen quenching was done in an auxiliary experiment. The auxiliary quenching apparatus consisted of a small-bore, high-temperature furnace, a sealed SiO2 tube containing the sample, and a dewar quenching flask filled with liquid nitrogen. The hydrided sample, previously quenched in the microgravimetric reaction chamber, was placed in a platinum boat in a vacuum-degassed SiO2 tube. A zirconium wire getter and degassed SiO2 rod, to reduce the internal volume, were also in the tube. After sealing the tube under vacuum the zirconium getter was heated to absorb the last traces of gas. Only the sample was heated at the reaction temperature for the desired length of time, and then the tube dropped through the opposite end of the furnace into the dewar. A quenching rate of 200" to 400° C per sec was estimated. Analyses of samples after the auxiliary experiment also showed practically no increase in oxygen or nitrogen content from heating in the SiO2 tube. All of the samples were examined at room temperature by the X-ray powder method. The majority of the powder patterns were obtained with double nickel-filtered CuKa radiation after 8- and 16-hr exposures in an 11.48-cm-diam camera. Cobalt and chromium radiation were also used to spread out the high d value end of the Pattern. Such patterns readily identified the minor phases. NO oxide or nitride lines were found. Where sharp back-reflection lines existed it was possible to reduce the
Citation

APA: O. M. Katz J. Alfred Berger  (1965)  Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part II – A Structural Investigation

MLA: O. M. Katz J. Alfred Berger Institute of Metals Division - The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part II – A Structural Investigation. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account