Institute of Metals Division - The Solubility and Precipitation of Nitrides in Alpha-Iron Containing Manganese

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 478 KB
- Publication Date:
- Jan 1, 1962
Abstract
Internal friction measurements were used to determine the effect of manganese on the solubility and precipitation kinetics of nitrogen. Manganese, in concentrations up to 0.75 pct, has little effect on the solubility at temperatures above 250°C. On the other hand, at Concentrations as low as 0.15 pct, manganese inhibits the formation of iron nitrides, especially Fe4N, even though it may not form a precipitnte itself. The precipitation and solubility of carbides and nitrides have been extensively investigated in the pure Fe-C and Fe-N systems.1-3 In recent years, some effort has been ispent in studying the influence of substitutional alloying elements on the behavior of carbon and nitrogen in ferrite.4 -7 In particular Fast, Dijkstra, and Sladek have investigated the effect of 0.5 pct Mn on the internal friction and hardness during the quench aging of Fe-Mn-N alloys.', ' They found that at low temperatures (below 200°C) the presence of 0.5 pct Mn greatly retarded quench aging. For example, after 66 hr at 200°C very little precipitation had taken place in the iron alloyed with manganese, whereas precipitation was complete after a few minutes in a pure Fe-N alloy. The effect of varying the manganese content and the details of the precipitation process were not mentioned in these papers. Fast' postulated that manganese causes a local lowering of the free energy of the lattice with a resulting segregation of nitrogen atoms to these low energy sites. The segregated nitrogen atoms are bound so tightly to the manganese atoms that they cannot form a precipitate. The internal friction measurements of Dijkstra and Sladek tended to confirm the concept of segregation of nitrogen around manganese atoms, and the increase in free energy on transferring a mole of nitrogen atoms from a segregated to a "normal" lattice site was computed to be - 2800 cal. Dijkstra and Sladek9 distinguished between two types of precipitates: ortho, a nitride of appreciably different manganese content than that of the matrix, and para, a nitride with a manganese content essentially that of the matrix. With each type of precipitate a solubility, again designated ortho or para, can be associated. Since the internal friction maximum in alloys which were aged several hours at 600" C dropped almost to zero, Dijkstra and Sladek9 concluded that the ortho solubility must be very low. The effect of temperature on the ortho and para solubilities has no1: been investigated. There are obviously several gaps in our knowledge concerning the influence of manganese on the behavior of nitrogen in a-iron. It was the purpose of the experiments described in this paper to determine the following: 1) The ortho and para solubilities of nitrogen as a function of temperature. 2) The details of the precipitation process at elevated temperatures. 3) The effect of varying the manganese concentration on the above phenomena. EXPERIMENTAL PROCEDURE Internal friction is conveniently employed in studying the precipitation of nitrides and/or carbides from a -iron because it is one of the few parameters, perhaps the only one, which is not affected by the presence of the precipitate itself. For this reason, internal friction techniques were heavily relied upon in the present experiment. A) Preparat of -. All specimens were prepared from electrolytic iron and electrolytic manganese. Alloys containing 0.15, 0.33, 0.65, and 0.75 wt pct Mn were vacuum melted and cast into 25 lb ingots. After being hot rolled to 3/4 in. bars, the ingots were swaged and drawn to 0.030 in. wires. The wires wen? decarburized and denitrided by annealing at 750° C for 17 hr in flowing hydrogen saturated with warer vapor. To obtain a medium grain size, - 0.1 mm, the wires were then heated to 945oC, allowed to soak for 1 hr, furnace cooled to 750°C, and water quenched. Subsequent internal friction measurements showed that this procedure reduced the nitrogen and carbon concentrations of the alloys to less than 0.001 wt pct. The wires were nitrided by sealing them in pyrex capsules containing anhydrous ammonia and annealing them for 24 hr at 580°C, the nitrogen being retained in solid solution by quenching the capsule into water. Immediately after quenching, the wires were stored in liquid nitrogen to prevent any precipitation of nitrides. By varying the pressure of ammonia in the capsule, it was possible to produce any desired nitrogen concentration. B) Internal Friction. The internal Friction measurements were made on a torsional pendulum of the Ke type,'' a frequency OF 1. or 2 cps being used. For
Citation
APA:
(1962) Institute of Metals Division - The Solubility and Precipitation of Nitrides in Alpha-Iron Containing ManganeseMLA: Institute of Metals Division - The Solubility and Precipitation of Nitrides in Alpha-Iron Containing Manganese. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.