Institute of Metals Division - The Effect of Silicon on the Substructure of High-Purity Iron- Silicon Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 12
- File Size:
- 2560 KB
- Publication Date:
- Jan 1, 1965
Abstract
oriented crystals of iron and iron with 3, 5, and 6.25 pct Si were rolled to reductions of 10 and 70 to 97 pct at room temperature. Similarly oriented crystals were deformed in tension. Dislocation substructures of the deformed crystals were observed by transmission electron microscopy to determine the effect of silicon on the formation of substructures. Pole figures were obtained to relate orientation changes to substructure. When rolled 10 pct, the iron crystals and the 3 pct Si-Fe crystals formed cells, 1 and 0.2 u in diameter, respecliuely. Cells were absent in the higher-silicon crystals. Extended dislocations and possible stacking faults were observed in the 6.25 pct Si-Fe crystal rolled 10 pct and annealed at 650°C. The stacking-fault energy was estimated to be 20 ergs per sq cm. Rolling to 70 pct resulted in the formation of sub-bands (0.9 µ wide) ill the iron crystals and transition bands (containing 0.2-µ-wide subbands) in the 3 pct Si crystals. No subbands formed in the 5 pct Si-Fe crystal until it was ankzealed. SliP occurred on (112) planes ill tension. The slip traces on the 3 pct Si crystal were wary while those on the 5 pct Si crystal wvere straight. The strain-hardening coefficient for the 5 pct Si crystal was nearly zero. Cells did not form, at least at elongations up to 10 pet. The results suggest that cross slip of iron is restricted by additions of silicon beyond about 3 pct possibly by formation of immobile extended dislocations. IN a previous paper' the authors described the substructures developed in (100)[001]-oriented crystals of 3 pct Si-Fe which were rolled to reductions of 10 to 90 pct at room temperature. At low reductions (10 to 20 pct) cells, approximately 0.2 to 0.3 ja in diameter, were formed. The cell walls consisted mainly of edge dislocations. With increasing reduction (up to 50 pct) the cells were seen to elongate in the rolling direction. In certain regions of the crystal there were significant reorientations which were characterized as rotations about an axis normal to the (100) or rolling plane. These regions were called "transition bands". The regions in which there were no reorientations were called ('deformation bands". At reductions of 60 to 70 pct the elongated cells in the transition bands became sub-bands separated by low-angle tilt boundaries with angles of disorientation of about 2 deg. The elongated cell structure in the deformation band was replaced by a general distribution of dislocations. It was noted that the width of the subbands in the transition bands remained 0.2 to 0.3 µ; i .e., the width of the subbands was the same as the initial cell diameter for reductions up to at least 70 pct. From this, and from considerations of the mechanism of formation of the transition bands,' it was concluded that the subbands evolved directly from the initial cells. In order to check this conclusion, it was decided to examine the relationship between initial cell diameter and width of subbands produced by large rolling reductions. Cell size is known to be dependent upon the temperature of deformation.2,3 However, preliminary experiments with 3 pct Si-Fe crystals indicated that the change in cell size with increasing temperature of deform,ation was not sufficient for the present purpose. On the other hand, cell diameters generally reported for iron deformed at room temperature2'3 range from 1 to 2 p, a factor of 3 to 10 larger than the cells in 3 pct Si-Fe rolled to 10 pct reduction,' indicating the possibility of a marked dependence of substructure (at least in terms of cell size) on the amount of silicon in iron. Thus, the investigation was enlarged to include the study of the effects of varying silicon content on substructure in lightly rolled as well as in heavily rolled crystals of iron and iron with 3, 5, and 6.25 pct Si. The crystals used in this study all had the same orientation, (100)[001], with respect to rolling plane and rolling direction. These were rolled to reductions of from 10 to 97 pct and the substructures determined by electron transmission microscopy in both the rolled state and after annealing. In addition, stress-strain curves were obtained from (100)[001]-oriented crystals of iron and 3 and 5 pct Si-Fe to determine the effect of silicon on tensile properties. The dislocation substructure of the tensile specimens was also determined for Samples pulled to 2 and 10 pct elongation at room temperature for comparison with the substructures produced by rolling. 1) EXPERIMENTAL PROCEDURE Crystals with 3, 5, and 6.25 pct Si were prepared by annealing 0.012-in.-thick sheets of high-purity Si-Fe in purified argon at 1200°C to effect growth
Citation
APA:
(1965) Institute of Metals Division - The Effect of Silicon on the Substructure of High-Purity Iron- Silicon CrystalsMLA: Institute of Metals Division - The Effect of Silicon on the Substructure of High-Purity Iron- Silicon Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.