Institute of Metals Division - The Densification of Copper Powder Compacts in Hydrogen and in Vacuum - Discussion

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 56 KB
- Publication Date:
- Jan 1, 1950
Abstract
A. J. SHALER*—I should like to congratulate the authors for having carried out such a precise set of experiments. It has been found useful, in sintering experimental compacts in vacuo, to make certain that the residual gas is not one which reacts with the metal. Since traces of oxygen can be kept away only with great difficulty, the technique is often adopted of using a "getter " of powder in the vicinity of the compacts, and, in addition, of permitting a small hydrogen leak to flow into the vacuum chamber. Did the authors use similar devices? This paper brings up a question concerning the definition of the word ' sintering.' The authors restrict its use to the adhesion between particles. Kuczynski, in a paper presented at this meeting, applies the word to the growth of areas of contact between particles. I have used it to mean both these phenomena and also the dimensional changes which continue to take place after the first two have run their course. May I suggest that we should come to an agreement on the use of these words ? Fig 1 and 2 show an interesting feature: extrapolation of the curves to zero time does not give a densification parameter of zero. The higher the temperature, the higher is the intercept on that axis. These observations agree with the concept of a practically instantaneous densification taking place while the compact is being brought to heat. Such a change may be brought about by plastic deformation and primary creep. The stress pattern causing this first rapid flow is, to my mind, due to the force of attraction between the surfaces of opposite particles in the regions immediately flanking their common areas of contact. The stress is not temperature-sensitive, but at room temperature plastic deformation only proceeds until the metal in the area of contact can support it elastically. As the metal is heated, the elastic limit falls, and further plastic flow occurs. At the higher temperatures, this is followed by primary creep, and finally by the steady-state rate-reaction which the authors are seeking. If they were to recalculate their densification-parameter values, using, not the initial density of the cold compact, but the density after the compacts have been brought to temperature, the systematic deviations from linearity in Fig 3 and 4 might be eliminated. Such initial densities might be obtained by extrapolating the curves of Fig 1 and 2 to zero time. I am naturally pleased to see that such a very well done series of experiments leads to a heat of activation (for the densification process in hydrogen) that is much higher than that for self-diffusion, in confirmation of the less elaborate results reported by Wulff and myself (Ind. and Eng. Chem., (1948) 40, 838). J. T. KEMP*—I would like to comment on Dr. Shaler's remarks. There are apparently different interpretations of the word "sintering." It seems to me that an accurate definition of our word is essential in all metallurgy. May I point out, in this connection, that in practical metallurgy the word "sintering" has been applied to a bonding process in the preparation of ores and flue dust for fur-nacing. It would be unfortunate if in the area of powdered metallurgy we should establish a definition that is essentially different in meaning. F. N. RHINES*—I think that I can answer the question by saying that I see no essential difference between the use of the term "sintering" in extractive metallurgy and in powder metallurgy; physically the same things are going on. I admit sintering is used for different end purposes in the two cases. When we resort to the sintering of lead ore mixture we are doing so to obtain a chemically reactive, loose texture of some rigidity. This is only a difference in use. After all, in powder metallurgy we sometimes deliberately produce a very porous material which has just a little strength, just as in the case of sinter cake. P. DUWEZ (authors' reply)—We agree that it would be helpful to have well-established definitions of such terms as "sintering." Since the question has now been raised, the time might be appropriate for its consideration by some suitable committee of one or more of the metallurgical societies. In answer to Dr. Shaler's first question, no getter nor hydrogen leak was used in our vacuum experiments, except insofar as the guard disks (used to reduce friction between specimens and trays) may have acted as getters. Dr. Shaler's statement that extrapolation of the curves of Fig 1 and 2 does not lead to zero densification at zero time apparently overlooks the logarithmic
Citation
APA:
(1950) Institute of Metals Division - The Densification of Copper Powder Compacts in Hydrogen and in Vacuum - DiscussionMLA: Institute of Metals Division - The Densification of Copper Powder Compacts in Hydrogen and in Vacuum - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.