Institute of Metals Division - The Combined Effects of Oxygen and Hydrogen on the Mechanical Properties of Zirconium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 401 KB
- Publication Date:
- Jan 1, 1965
Abstract
Polycrystalline tensile specimens of various Zr-0-H alloys have been tested at 298°, 178°, and 77°K. Solute oxygen and hydride precipitates in quenched alloys made individual contributions to the yield strength at 0.2 pct strain which combined to produce a resultant strength increment, a,., Ductility changes which were ohserved can he interpreted in terms of the various oxygen and hydrogen concentrations, testing tem -peratures, and dispositions of the hydride. ADDITIONS of oxygen in solid solution were known to increase the yield and tensile strengths of polycrystalline zirconium as early as 1951.' More recently, the critical resolved shear stress (CRSS) for prism slip in zirconium single crystals was also shown to be affected by the solute oxygen impurity.' This latter work also demonstrated that large increments of strength could be contributed by the finely dispersed zirconium hydride precipitates that are present in quenched Zr-H alloys.3 It was concluded that the combined strengthening due to alloying could be expressed by where to is the increase in the CRSS due to solute oxygen alone and TH is the increase due to finely dispersed hydride precipitates. Eq. [I] is analogous to one used to express the combined strengthening effects of work hardening and neutron radiation damage.4 Eq. [1] was verified only indirectly and for only small amounts of the impurities—up to 0.14 at. pct 0 and 0.63 at. pct H. The present investigation was undertaken to obtain a more direct verification of the validity of the form of Eq. [1] for this system and also to determine the combined effects of oxygen and finely dispersed hydride precipitates on the tensile strength and ductility of polycrystalline zirconium. EXPERIMENTAL PROCEDURE Tensile specimens were machined from the same rolled billet of Kroll zirconium used in the earlier study.' These measured 38 by 4.7 by 0.5 mm and had 10-mm gage lengths which were 2.8 by 0.5 mm. Each specimen was ß-annealed in vacuo at 1173°K for 15.5 hr and a-annealed at 1073°K for 4 hr to D. G. WESTLAKE, Member AIME, is Associate Metal l ur-gist, Metallurgy Division, Argonne National Laboratory, Argonne, III. Manuscript submitted July 17, 1964. IMD______________ give an equiaxed structure with grain diameters averaging 0.06 mm. Oxygen was added by allowing the metal to react with a known quantity of oxygen during the 0 anneal and known quantities of hydrogen were added during the a anneal. Each alloy was encapsulated in Pyrex under vacuum, annealed at 873°K for 4 hr, quenched into ice water, and polished by immersion in a solution of 46.75 vol pct H2O, 46.75 vol pct concentrated HNO3, and 6.5 vol pct HF (49 pct) at 298°K. Special heat treatments given to a few specimens are described in the results below. Tensile tests were done on an Instron machine and were begun within 20 min after the quench, except where specified otherwise. Tests at 298°K were in air, at 178°K in acetone, and at 77°K in liquid nitrogen. All tests were at a strain rate of 8x sec-1. RESULTS AND DISCUSSION Yield Stress at 298°K. The compositions of alloys and the corresponding yield stresses (0.2 pct strain) are given in Table I. A plot of the yield stresses of the oxygen alloys, A, B, C, and D, indicates that varies linearly with CO1/2, where Co is the oxygen concentration, Fig. 1. This is in accord with Fleischer's6 theory for solution strengthening if the oxygen atoms do not cluster, or the cluster size remains constant with increasing oxygen concentration. In Fig. 1, it appears that if one could prepare some oxygen-free zirconium its yield stress would be very low. Therefore, we shall assume that for the oxygen alloys is equivalent to O0, the strength increment contributed by the presence of oxygen. The relationship between0.2and Co is expressed by 0.2 = 31.3 CO1/2, when the yield stress is in kg per sq mm and the concentration is in at. pct. Each of the hydrogen alloys, Al, A2, A3, and A4, contained 0.081 at. pct 0 as an impurity. In Fig. 1, it appears that this small amount of oxygen makes a significant contribution to the strength which cannot be ignored when we evaluate the contribution of the finely dispersed hydride. Let us assume the validity of the following equation: a0.2 = (a2o+a2R)1/2 [2] which is analogous to Eq. [I] for single crystals, and calculate values of UH for the hydrogen alloys by using the experimental values of 0.2 and o (0.081 at. pct) = 8.9 kg per sq mm. For 0.36 at. pct H, oH = 6.47; for 0.72 at. pct H, OH = 11.30; for 2.16 at. pct H, OH = 19.4; and for 3.60 at. pct H,
Citation
APA:
(1965) Institute of Metals Division - The Combined Effects of Oxygen and Hydrogen on the Mechanical Properties of ZirconiumMLA: Institute of Metals Division - The Combined Effects of Oxygen and Hydrogen on the Mechanical Properties of Zirconium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.