Institute of Metals Division - The Cadmium-Uranium Phase Diagram

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 824 KB
- Publication Date:
- Jan 1, 1962
Abstract
The cadmium-uranium system was studied by thermal, metallographic, X-7-ay and sampling techniques; special emphasis was placed on the establishment of the liquidus lines, The single inter metallic phase, identified as the compound UCd11 melts peritectically at 473°C to form a-umnium and melt containing 2.5 wt pct uranium. The cadmium-rich eutectic (0.07 wt pct uranium) freezes at 320.6°C. Solid solubilities in uraizium and cadmium appear to be negligible. Between 473°C and 600°C the liquidus line is retograde. NO publication relating to the cadmium-uranium phase diagram was found in the literature. The establishment of this diagram was of considerable interest to us because of a possible application of the system to the pyrometallurgical reprocessing of nuclear fuels. Analysis of liquid samples, metallographic examination, thermal analysis, and X-ray diffraction analysis were used to establish the phase diagram from about 300° to 670°C. Particular emphasis was placed on the establishment of the liquidus lines. The same system was concurrently studied in this laboratory by the galvanic cell method.' Both studies benefited from a continual interchange of information. MATERIALS AND EXPERIMENTAL PROCEDURES Stick cadmium (99.95 pct Cd, American Smelting and Refining Co.) contained 140 ppm lead as the major impurity. Reactor grade uranium (99.9 pct U, National Lead Co.) was most often used in the form of 20-meshspheres. This form was particularly suitable because it does not oxidize as readily as finer powder. The liquidus lines were determined by chemical analysis of filtered samples of the saturated melts. The liquid sampling technique is described elsewhere2 alumina crucibles (Morganite Triangle RR), tantalum stirring rods, tantalum thermocouple protecthecadmiumtion tubes, Vycor or Pyrex sampling tubes, and grades 60 or 80 porous graphite filters were used. Uranium dissolves in liquid cadmium rather slowly. In order to achieve saturation of the melts it was necessary to modify the procedure of Ref. 2 by the use of more vigorous stirring and longer holding periods (at least 3 hr) at each sampling temperature. The samples were analyzed for uranium by spectro-photometry (dibenzoyl methane method) or by polar- ography. The analyses are estimated to be accurate to 2 pct. Thermal analysis was performed on alloys contained in Morganite alumina crucibles in helium atmospheres. Standard techniques were employed; heating and cooling rates were about 1°C per min. For the determination of the peritectic temperature, Cd-10 pct U charges were first held for at least 50 hr at temperatures in the range 435° to 460°C to form substantial amounts of the intermediate phase. For the determination of the effect of cadmium on the a-p transformation temperature of uranium, charges of Cd-25 pct U (-140+100 mesh uranium spheres) were first held near the transformation temperature, with stirring, to promote solution of cadmium in the solid uranium. The holding times and temperatures for these treatments were 18 hr at 680°C for the cooling run and 28 hr at 630°C for the heating run. Alloy specimens for X-ray diffraction and metallographic examination of the intermediate phase were prepared in sealed, helium-filled Vycor or Pyrex tubes. Ingots from solubility runs and thermal analysis experiments also were examined metallographically. Crystals of the intermediate phase were recovered from certain cadmium-rich alloys by selective dissolution of the matrix in 20 pct ammonium nitrate solution at room temperature. Temperatures were measured with calibrated Pt/Pt-10 pct Rh thermocouples to an estimated accuracy of 0.3°C. However, the depression of the freezing point of cadmium at the eutectic is estimated to be accurate to 0.05°C because a special calibration of the thermocouple was made in place in the equipment with pure cadmium just prior to the measurement. EXPERIMENTAL RESULTS The results of this study were used to construct the cadmium-uranium phase diagram shown in Fig. 1. This diagram is relatively simple; it is characterized by a single intermediate phase, 6 (UCd11), which decomposes peritectically, and which forms a eutectic system with cadmium. The solid solubilities in the terminal phases appear to be negligible. An unusual feature of the diagram is the retrograde slope of the liquidus line above the peritectic temperature. The Liquidus Lines. The liquidus lines above and below the peritectic temperature are based on three separate solubility experiments. The data are shown in Fig. 1 and are given in Table I. It is apparent from the figure that the solubility data obtained by the approach to saturation from higher temperatures fall on substantially the same lines as those obtained
Citation
APA:
(1962) Institute of Metals Division - The Cadmium-Uranium Phase DiagramMLA: Institute of Metals Division - The Cadmium-Uranium Phase Diagram. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.