Institute of Metals Division - System Molybdenum-Boron and Some Properties of the Molybdenum-Borides

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 488 KB
- Publication Date:
- Jan 1, 1953
Abstract
THE hard refractory borides of the transition elements of the 4th, 5th, and 6th groups of the Periodic System have been the subject of a number of recent investigations.'-' It is well known now that most of these elements form several different borides, and Kiessling8 has summarized the rules which govern to some extent the arrangements of the boron atoms in the various structures. Melting points of a few borides have been published." The systems Fe-B, Ni-B, and Co-B have been reported," but, as these borides are rather low melting, they are outside of the groups of boron compounds considered here. Brewer' has tested the stability of various borides and estimated a number of eutectic temperatures between different borides, but in no case was the complete system of a transition metal and boron investigated. The phase diagram becomes of special importance if the preparation of the borides from the elements in powdered form is considered; the lowest eutectic temperature will determine the first appearance of a liquid phase. Also, the knowledge of high temperature phases, if they exist, is important for the preparation of bodies from these borides by hot pressing or sintering. During the investigation of various metal borides,7 it was found that there were more boride phases existing in the Mo-B system than reported by Kiessling." They occur, however, only at temperatures above 1500°C and were, therefore, not found by him. This led to a study of the equilibrium diagram of the Mo-B system. ranging from 0 to 25 pct B and from room temperature to the liquidus. Part of this investigation was reported during the "Research in Progress" session at the 1952 Annual Meeting of the AIME.11 Raw Materials and Preparation of the Borides The raw materials used were commercial molybdenum and boron powder, both supplied by the Molybdenum Corp. of America. The molybdenum powder was 99+ pct pure? while the boron powder contained about 83 to 85 pct B. A large percentage of the impurities in this powder was oxygen, with the rest formed by iron, calcium, and unknown substances. The low purity of the boron used was, however, not considered detrimental to the final product, as most of the impurities evaporated at the high temperatures at which the borides were formed. The final product always had a minimum purity of 96 to 98 pct (figured as molybdenum and boron), with carbon, iron, and probably oxygen being the remaining products. Carbon is usually present as graphite. The chemical analyses always confirmed the compositions which corresponded to the crystallographic structures as determined by X-ray diffraction, and the boron content of the finished product agreed closely with that of the starting mixture; no boron was lost during the boride preparation. The chemical analysis methods employed for molybdenum and boron were previously described by Blumenthal.12,13 The powders were mixed by hand in the desired proportions, compressed at room temperature under low pressure, and then heated under hydrogen to about 1500" to 1700°C in a graphite crucible to form the borides. Usually, the three well-known borides Mo,B, MOB, and Mo,B,, which are stable at room temperatures, were prepared in this way, and all other compositions were made by mixing these borides in various ratios or by the addition of molybdenum or boron powders for the very low or very high boron contents. Preparation of two-phase compositions directly from the elemental powders was tried only occasionally to check whether equilibrium could be reached in this way. Experimental Procedures The stable borides were mixed in the desired ratios and heated under hydrogen in graphite crucibles to various temperatures. The well insulated crucibles were heated in a high frequency induction furnace. Special care was taken to obtain exact temperature measurement, which proved much more difficult than originally anticipated. It is believed that individual temperature measurements have an error of less than ±25ºC, while melting or transformation temperatures are accurate within ±50°C. The temperatures were measured with an optical pyrometer which was aimed at the closed end of a graphite tube extending down into the crucible. close to the samples. Attempts to measure directly through the hydrogen exit stack failed. The crucible arrangement is shown in Fig. 1. Heating was done at a slow rate to be sure that the temperature inside the crucible was uniform. The specimens were kept at the final temperature for about 30 min. For the investigation of high temperature phases, some samples were quenched. They were heated, without atmosphere protection, in a very small graphite crucible which could be rapidly removed from the high frequency coil, and dropped into water. These quenched samples were afterwards annealed to establish the equilibrium at lower temperatures. The melting points or the positions of the solidus and liquidus lines were determined by heating the specimens to various temperatures and examining them at room temperature for evidence of a liquid phase. These results were checked later on by thermal arrest curves, especially to determine the exact position of the eutectic temperature line. For this purpose about 200 g of the boride were melted in a graphite crucible, in an arrangement similar to Fig. 1. Slow cooling was assured by very good
Citation
APA:
(1953) Institute of Metals Division - System Molybdenum-Boron and Some Properties of the Molybdenum-BoridesMLA: Institute of Metals Division - System Molybdenum-Boron and Some Properties of the Molybdenum-Borides. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.