Institute of Metals Division - Some Aspects of the Crystallization and Recrystallization of Vapor-Deposited Vitreous Selenium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
N. E. Brown F. L. Versnyder
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
376 KB
Publication Date:
Jan 1, 1956

Abstract

THE apparent dependency of the electrical characteristics of hexagonal crystalline selenium on microstructure has aroused much interest in microscopical studies of selenium. Microscopic observations on the crystallization of selenium have been made by Escoffery and Halperin,' P. H. Keck,' and other investigators. It is the purpose of this paper to discuss the microstructural changes observed on polished cross-sections of single layers of selenium after various heat treatments. Observations were also made on crystallization of the free-surface layer of these deposits. In general, all of the transformations studied were either transformations of the vitreous selenium to hexagonal selenium or micro-structural transformation of the hexagonal selenium itself. Procedure The selenium used in this work was obtained from the American Smelting and Refining Co. and was approximately 99.96 pct pure. An intentional impurity of 1 part per 2,000 of bromine was added to the material prior to evaporation. A thickness of approximately 0.002 in. of this selenium was vapor deposited on an aluminum base plate. The maximum plate temperature during the vacuum vapor deposition was 140°C. Mounting of the cross-sectional specimens for metallographic study could not be done in plastic mounting media, as is customary, since temperatures in excess of 50°C would cause unwanted transformations. Consequently, a simple clamp-type device was used to mount the specimens for preparation. All grinding operations were then done carefully by hand in order that the specimen not become heated during this operation. Wet polishing was done on the conventional metallographic polishing laps, using successively finer grinding powders. An extremely careful polish is necessary, since observation and micrography of the specimens are done in the unetched condition under polarized light. The two observations of crystallization made on the free surface of vitreous selenium deposits (Figs. 4 and 5) were made on surfaces which were perpendicular to the cross-sections studied. These free-surface layers were examined directly, i.e., no pre- vious metallographic preparation, as obtained from the vacuum vapor deposition. Microscopic Observations A study was made of polished cross-sections of the vitreous selenium as-deposited. It was noted that in all cases there was columnar crystallization adjacent to the base plate, which appeared to occur during the vacuum deposition process. This observation has also been made by Keck? It also was observed that vagrant spherulitic crystallization occurred in the vitreous selenium. The term "vagrant" is used, since these spherulitic grains appear to crystallize at random throughout the vitreous selenium during the vacuum deposition process. Columnar crystallization at the A1-Se interface and a typical spherulite observed in a polished cross-section of "as-deposited" vitreous selenium may be seen in Fig. 1. Cross-sectional samples of vitreous selenium studied after heat treating individual samples for 20 min in 10" steps from 80" to 220°C revealed that crystallization—in this case, columnar crystal growth —proceeds from the aluminum base plate to the surface of the specimen (Fig. 2). Crystallization was microscopically observed to be complete after the 130°C heat treatment. Visual examination of the free surface of the specimen after the 130 °C heat treatment revealed the readily recognizable grey appearance of the completely crystallized selenium, in corroboration of the microstructural observations. No microstructural transformations then appeared to take place between 130" and 190°C. At 190°C the beginning of recrystallization appeared and proceeded until the columnar grain structure had been completely transformed to equiaxed grains between 210" and 220°C (Fig. 3). Naturally, the grain size of the recrystallized grains at the lower temperatures (190" to 210°C) was smaller than is illustrated in Fig. 3. In addition, polished cross-sections of deposits heat treated at 140°C for 10 min to cause complete crystallization and, subsequently, heat treated in 10" steps from 80" to 220°C for 20 min were studied. As expected, no microstructural transformations took place until the beginning of recrystallization was observed at 190°C. A comparison with the previously studied specimens revealed that recrystallization proceeded almost identically in the two experiments although in the first case the deposits were vitreous prior to the series of heat treatments and in the second case they had been crystallized by a previous heat treatment. By heat treating for longer times (180 min) at lower temperatures, the
Citation

APA: N. E. Brown F. L. Versnyder  (1956)  Institute of Metals Division - Some Aspects of the Crystallization and Recrystallization of Vapor-Deposited Vitreous Selenium

MLA: N. E. Brown F. L. Versnyder Institute of Metals Division - Some Aspects of the Crystallization and Recrystallization of Vapor-Deposited Vitreous Selenium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account