Institute of Metals Division - Size-Factor Limitation in A6B23-Type Compounds Due to the "Enveloping Effect"; New Compounds Between Manganese and the Lanthanide Elements

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Frederick E. Wang James R. Holden
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
439 KB
Publication Date:
Jan 1, 1965

Abstract

Through both single-crystal and powder X-ray diffraction methods, ten A6B23-type compounds have been confirmed to exist between lanthanides (A) (plus scandium and yttrium) and manganese (B); A = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. The formation of a compound of this type is shown to he extremely atomic size-sensitive; hence it can be classified as a "size-factorH compound. The "enveloping effect", a geometrical consideration observed in its crystal structure, is proposed as the reason for the A6B23-type compound being size-sensitive. The approximate ideal geometrical ratio of the radii R/r is 1.31 while experimentally A6B23-type compounds have a radius ratio lying within the range 1.2 to 1.4. FLORIO t al.' characterized the structure of Th6MnZ3 as fcc, space group Fm3m, with 116 atoms in the unit cell. Since then, a number of isotypic binary compounds, and recently Gd n,,' have been confirmed to exist. The fact that strontium and barium form A6Bz3-type compounds with magnesium strongly suggested the possible existence of Ba6Liz3. However, investigation3 showed the compound Ba6LiZ3 to be absent. Since both strontium and barium are group 11-a elements and are therefore "open metals",6 the nonexistence of Ba6LiZ3 can hardly be explained satisfactorily by valence-electron considerations. On the other hand, the consistent atomic-radius ratio, (R/r),* observed for the known A6Bz3-type compounds,3 strongly suggests that the formation of compounds of this type is atomic size-sensitive. Therefore, one is tempted to explain the nonexistence of Ba6LiZ3 entirely on the basis of the atomic-size difference between strontium and barium. However, this approach is not entirely without objection. Atoms are not rigid spheres and are known to vary in size within certain limits.7 Since the atomic-radius difference between strontium and barium (0.07 to 0.09A) is within these limits, it is reasonable to assume that the size difference would have a negligible effect on the formation of Ba6LiZ3. This view is further supported by the fact that the radius ratio, R/r, in other known "size-factor" compounds is observed to range widely—for example, from 1.08 to 1.45 for ABz-type compounds (C15, MgCuz type)' and from 1.37 to 1.58 for AB5-type compounds (D2d, CaZn5 type).g The present investigation was undertaken in order to find a more satisfactory explanation for the non-existence of Ba6LiZ3 and, consequently, a better understanding of the nature of the A6Bz3-type compound. The primary objectives are to confirm the previous conclusion3 that the A6B23-type compound is indeed a "size-factor" compound and subsequently to determine the atomic-radius ratio range in which the A6Bz3-type compound can exist. In order to achieve these objectives, stoichiometric A6Bz3 alloys, where manganese (B) was alloyed with various lanthanide elements (A), were selected for investigation. The atomic-radius ratios of lanthanide elements with manganese range from 1.26 for Lu/~n to 1.46 for Eu/Mn. This radius ratio range includes and exceeds the range of all previously reported A6Bz3-type compounds—1.32 for Th/Mn' through 1.38 for Sr/Li. Furthermore, the atomic-size difference between successive elements of the lanthanide series in order of atomic number) is of the order of 0.01A (europium and ytterbium are exceptions). The series of lanthanon-manganese alloy systems is ideally suited to a precise determination of the limits of allowable atomic-radius ratio for A6Bz3-type compound formation. EXPERIMENTAL PROCEDURE The lanthanide metals, in ingot form, supplied by Michigan Chemical Corp. (St. Louis, Mich.) and Nuclear Corp. of America (Burbank, Calif.), were guaranteed by the suppliers to be at least 99.9 wt pct pure (traces of silicon, calcium, and other minor constituents present on occasion, not to be more than 0.05 wt pct) as shown by spectrographic analysis. Manganese metal, in polycrystalline form, was redistilled from the commercial, chemically pure grade and was analyzed to be at least 99.95 wt pct pure. In all cases, the atom ratio between the two elements in each charge was A (rare-earth meta1):B (manganese) = 6:23 and a constant weight, 3 g, of
Citation

APA: Frederick E. Wang James R. Holden  (1965)  Institute of Metals Division - Size-Factor Limitation in A6B23-Type Compounds Due to the "Enveloping Effect"; New Compounds Between Manganese and the Lanthanide Elements

MLA: Frederick E. Wang James R. Holden Institute of Metals Division - Size-Factor Limitation in A6B23-Type Compounds Due to the "Enveloping Effect"; New Compounds Between Manganese and the Lanthanide Elements. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account