Institute of Metals Division - Silica Films by Chemical Transport

The American Institute of Mining, Metallurgical, and Petroleum Engineers
T. L. Chu G. A. Gruber
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
370 KB
Publication Date:
Jan 1, 1965

Abstract

Silica films hare been rleposited 011 silicon substmtes at 400° to 600°C by a chemical-transport technique using hydrogen fluoride as the transport agent ill a closed system. This transport takes place from a source materia1 1071: temperature to substrates at higher temperatures, as indicated by the thermochemistry of the transport reaction. The experimental variables of- the transport process, such as the substrate temperature, the pressure pi the transport agent, and so forth, have been studied. The rate -determining step of the transport process appears to he the ),ale of chemical reaction in the source region. The transported films are similar to thermally grown silica films in physical proper-ties with the exception of 'some what higher dissolrrtion rates. SILICA films deposited on suitable substrates serve many purposes in electronic devices. They are used for the fabrication of tunneling devices, the surface passivation of devices, and the shielding of devices from nuclear radiation: and as selective masks against the diffusion of specific impurities into semiconductors. Doped silica films can also be used as sources for the diffusion of impurities into semiconductors. Several oxidation and deposition techniques for the preparation of silica films have been developed to meet the requirements of these applications. The therma1 oxidation of silicon by oxygen or steam at temperatures above 900 C is commonly used in silicon technology. The deposition techniques are perhaps more advantageous since they usually require lower temperatures and are not limited to silicon substrates. Silica films have been deposited on silicon and other substrates by reactive sputtering and chemical reactions. The sputtering of silicon in an oxygen atmosphere is capable of depositing good-quality silica films on silicon' and gallium arenide. Many chemical reactions are known to yield silica at room temperature or higher. These reactions may involve intermediate steps. However, the final step yielding silica should take place predominately on the substrate surface in order to produce adherent films. When silica is formed in the gas phase by volume reactions, no adherent deposit can be obtained. Generally, the experimental conditions of a reaction can be varied so that the surface reaction predominates over the volume reaction. The chemical reactions which have been used successfully for the deposition of silica films are briefly as follows. The pyrolysis of alkoxysilanes in an inert atmosphere or under reduced pressure has been employed to deposit silica films on germanium3 and silicon4 at 650" to 750°C in a flow system. The deposition of silica films from alkoxysilanes has also been achieved at nearly room temperature by a low-pressure plasma. Device quality silica films have been deposited on germanium and gallium arsenide by the deposition of an amorphous thin silicon film followed by oxidation at 600" to 700" . Silica films for high-temperature capacitors have been produced by the hydrolysis of silicon tetrabromide at 950°C in argon and hydrogen atmospheres.7 We have developed a chemical-transport technique for the deposition of silica films on semiconductor substrates at relatively low temperatures. The thermochemistry of the transport reaction, the experimental variables of the transport process, and the properties of the transported silica films are described in this paper. THERMOCHEMICAL CONSDERATIONS The transport of solid substances by chemical reactions in the presence of a temperature gradient has been used for the preparation of films and crystals of many electronic materials. In this technique, a gaseous reagent is chosen so that it reacts reversibly with the solid substance under consideration to form volatile products. Since the equilibrium constants of most reactions are temperature-dependent, the transport of these products to regions of suitable temperature in the reaction system would cause the reverse reaction to take place. depositing the original solid. When the equilibrium is shifted toward the formation of the solid as the temperature is decreased, the solid is transported from a high-temperature zone to a lower-temperature region, and vice versa. This chemical-transport technique can be carried out in a closed or gas-flow system. In a closed system, chemical equilibrium is presumably established in the different temperature regions of the system, and the transport agent regenerated in the deposition region repeats the transport process in a cyclic manner. The local chemical equilibrium may not be approached in a flow system: however, this system offers a greater degree of flexibility. Silica reacts reversibly with hydrogen fluoride and this reaction was chosen for the transport process. The over-all reaction between silica and hydrogen fluoride may be written as: SiO2(s) + 4HF(g-) = SiF4Ur) + 2H2O(^)
Citation

APA: T. L. Chu G. A. Gruber  (1965)  Institute of Metals Division - Silica Films by Chemical Transport

MLA: T. L. Chu G. A. Gruber Institute of Metals Division - Silica Films by Chemical Transport. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account