Institute of Metals Division - Secondary Recrystallization in High-Purity Iron and Some of Its Alloys (TN)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Jean Howard
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
1
File Size:
82 KB
Publication Date:
Jan 1, 1962

Abstract

RECENT attempts to produce secondary recrystalli-zation in high-purity iron have given conflicting results. Coulomb and Lacombe1'2 did not find it but Dunn and Walter3,4 did. The latter workers have stated that (100) [001] and/or (110) [001] orientations develop depending on the oxygen content of the annealing atmosphere. This Technical Note records results which are in agreement with Dunn and Walter in so far as it shows that secondary recrystallization can be produced in high-purity iron, but does not confirm that both types of orientation are obtainable. Similar observations have been made on chromium-iron and molybdenum-iron, although when this technique is used on 3 1/4 pct Si-Fe, both types are obtained as in the work of Dunn and alter.' Pure iron strip was cold-rolled from sintered compacts prepared from Carbonyl Iron Powder-Grade MCP of the International Nickel Co. (Mond) Ltd. The powder contains about 0.5 pct 0, 0.01 pct C, 0.004 pct N, (0.002 pct S, $0.005 pct Mg and Si, and 0.4 pct Ni—that is, it is substantially free from metallic impurities other than nickel, which is thought to be unimportant in the present work. The iron powder was (a) pressed at 25 tons per sq in. into blocks measuring 3 by 1 by 0.3 in., (b) deoxidized in hydrogen (dewpoint -60°C) by heating first at 350°C and then at 600° C until the dewpoint returned to -60°C at each temperature and (c) sintered in hydrogen (dewpoint -40°C) at 1350°C for 24 hr. (when dewpoint is referred to in this Note, it is the value as measured on the exit side of the furnace). The sintered compacts were cold-rolled to 1/8 in., annealed in hydrogen (dewpoint -60°C) at 1050°C for 12 hr and cold-rolled to 0.004, 0.002, and 0.001 in. with inter-anneals at 900°C for 5 hr and a final reduction of 50 pct. Final annealing of strip between alumina or silica plates at 875" to 900°C in hydrogen with dewpoints of -20°, -55" and -80°C produced secondary grains with the (100) in the rolling plane; the extent of secondary recrystallization was greatest when the dewpoint was -55°C. Annealing in a vacuum of 2 x 10"5 mm Hg at the same temperature produced no secondary recrystallization at all. With strip thicker than 0.002 in. very few secondary crystals developed whatever the conditions of annealing. Using a processing schedule somewhat similar to that described above, secondary recrystallization was produced in two bcc alloys of iron, viz. 80 pct Fe + 20 pct Cr and 96 pct Fe + 4 pct Mo. The former was reduced to final thicknesses of 0.001 to 0.004 in. and the latter to final thicknesses of 0.001 to 0.016 in. With the chromium-iron, a final anneal at 1250°C (found to be the most effective temperature for developing secondary crystals in the 0.004-in material) with a dewpoint of -25°C produced a greater degree of secondary recrystallization than with dewpoints of -50°C or -20°C. Secondary crystals developed in strips of all thicknesses from 0.001 to 0.004 in. Final annealing in vacuum produced no secondary crystals at all. For the molybdenum-iron a temperature of 1200°C was most effective. It was found that a dewpoint of -50°C during the final anneal gave better results than a dewpoint of -25 "C on the 0.008 in. material. Final annealing in vacuum gave slightly worse results than annealing in hydrogen with a dew-point of -50°C. Secondary crystals were developed in strips of all thicknesses up to 0.008 in. The experiments show that the extent of secondary recrystallization is a maximum for certain critical values of oxygen content of furnace atmosphere and annealing temperature, and that these values are different for different alloys. The thinner the material, the less critical these values are. The general conclusions are that secondary recrystallization can be obtained in high-purity iron, chromium-iron, and molybdenum-iron, using a processing schedule similar to that which will cause the phenomenon to take place in high purity 3 1/4 pct Si-Fe. Unlike the silicon-iron, however, only the (100) (0011-- orientation has been produced in these alloys, irrespective of the temperature of final annealing and the oxygen content of the furnace atmosphere. The information used in this Note is published by permission of the Engineer-in-Chief of the British Post Office.
Citation

APA: Jean Howard  (1962)  Institute of Metals Division - Secondary Recrystallization in High-Purity Iron and Some of Its Alloys (TN)

MLA: Jean Howard Institute of Metals Division - Secondary Recrystallization in High-Purity Iron and Some of Its Alloys (TN). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account