Institute of Metals Division - Recent Advances in the Understanding of the Metal-Oxide-Silicon System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
B. E. Deal A. S. Grove E. H. Snow C. T. Sah
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
373 KB
Publication Date:
Jan 1, 1965

Abstract

A summary of- several recent investigations in to the properties of the metal-oxide-silicon system is presented. A major portion of these studies makes use of the MOS capacitance-z)oltage method of' analysis. The particular areas of investigation which are reported include: 1) a general survey of the electvical properties of thermally oxidized silicon surjbccs; 2) a study of ion migration through silicon dioxide films ; 3) measurements of electron and hole mobilities in surface inversion layers; 4) a study of impurity redistribution due to thermal o.ridatiotz; and 5) measurements of the rates of oxidation oj-heavily doper7. silicon. THE importance of the metal-oxide-semiconductor (MOS) system in the semiconductor industry is well-known. In addition to its importance in the "planar" device technology,' the MOS structure is now also used in the fabrication of active solid-state devices. Consequently, extensive efforts have been made recently to obtain a better understanding of the characteristics of this system. A summary of some studies of the MOS system conducted in our laboratories during the past year is presented. For the most part these studies used silicon as the semiconductor, along with silicon dioxide and aluminum as the other two components of the system. Since the MOS capacitance-voltage method of analysis was used extensively in these studies, we will first briefly describe its nature and consider some of the possible causes of deviation of experimental observations from the simple theory. We will then outline the various related areas of investigation carried out in our laboratories and will briefly indicate some of the results. It should be noted that the purpose of this paper is merely to provide a brief summary of MOS studies. More detailed discussions of the various areas of investigation are given in the references cited. PRINCIPLES OF THE MOS C-V METHOD OF ANALYSIS' A sketch of the MOS structure is shown in the upper portion of Fig. 1. In this case the insulating film is Si02 and the semiconductor p-type silicon. If a large negative bias is applied to the metal field plate, holes are attracted to the silicon surface. The silicon then behaves much like a metal and the capacitance measured is that of the oxide layer alone, Co. If a small positive bias is applied to the aluminum, holes are repelled and a region depleted of majority carriers is formed at the silicon surface. This depletion I-egion adds to the width of the dielectric and the measured capacitance begins to drop. With increasing positive bias, the width of the electrical depletion region increases. At some large positive bias an inzevsion regiotr is formed at the surface and additional charges induced in the silicon appear in the form of electrons in this narrow inversion region. Thus the depletion-region width approaches a maximum value and, consequently, the capacitance reaches a minimum value and then either levels off or rises again depending on the measurement frequency and the rate of equilibration of the minority carriers in the inversion layer.3 Band diagrams, along with the corresponding charge distributions, are shown in Fig. 1 for the above bias conditions. If minority carriers cannot accumulate at the surface to form an inversion region, the depletion-region width continues to increase with increased positive bias and the capacitance drops toward zero as in a reverse biased p-n junction. The effect of a work-function difference $hs between the metal and the silicon, and of surface charges per unit area Qss located at the oxide-silicon interface, is simply to attract charges in the silicon much like the applied bias. It can be shown that this results in a parallel shift of the capacitance-voltage characteristic along the voltage axis by an amount corresponding to AV = -$bIs + Qss/Co. Theoretical curves have been calculated4 giving the capacitance of the MOS structure C normalized to the oxide capacitance Co vs the quantity VG here VG is the voltage applied to the metal field plate. In Fig. 2 such calculations are shown as points for a particular oxide thickness and bulk impurity concentration for a p-type semiconductor. (For an n-type semiconductor the curves would be mirror images of these.) All three cases, i.e., low frequency. high frequency, and depletion, are indicated. Also shown in the figure are recorder tracings of the characteristics of actual devices. These characteristics have been shifted along the voltage axis to compensate the effect of surface charges and work-function difference. It is evident that agreement between experiment and theory is good. The nature of this shift along the voltage axis is
Citation

APA: B. E. Deal A. S. Grove E. H. Snow C. T. Sah  (1965)  Institute of Metals Division - Recent Advances in the Understanding of the Metal-Oxide-Silicon System

MLA: B. E. Deal A. S. Grove E. H. Snow C. T. Sah Institute of Metals Division - Recent Advances in the Understanding of the Metal-Oxide-Silicon System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account