Institute of Metals Division - Plastic Deformation of Rectangular Zinc Monocrystals

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. J. Gilman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
473 KB
Publication Date:
Jan 1, 1954

Abstract

The data presented indicate that the critical shear stress and strain-hardening Thedatapresentedrate of a zinc monocrystal depend on the orientation of its slip direction with respect to its external boundaries. The tendency of a crystal to form deformation bands also depends on its shape. THE plastic behavior of pairs of zinc monocrystals in which both members of the respective pairs had the same orientation with respect to the longitudinal axis, but each had different orientations with respect to their rectangular external shapes, were compared in this investigation. The purpose of the investigation was to see what influence the shape or surface of a zinc crystal has on its mechanical properties. In a previous investigation of triangular zinc monocrystals,1 anomalous axial twisting was observed which seemed to be related to the triangular shape of the crystals. Wolff,' in 400°C tensile tests of rectangular rock-salt crystals bounded by cubic cleavage planes, found that, of the four equivalent slip systems, the two with the "shorter" slip directions yielded and produced slip lines at lower stresses than the other two. This observation and the work of Dommerich³ as formulated by Smekal4 as a "new slip condition" for rock-salt: "among two or more slip systems permitted by the shear stress law, with reference to the formation of visible slip lines by large individual glides, that slip system is preferred which has the shortest effective slip direction." More recently, Wu and Smoluchowski5 reported essentially the same effect for ribbon-like (20x2x0.2 mm) aluminum crystals at room temperature. Experimental Chemically pure zinc (99.999 pct Zn), purchased from the New Jersey Zinc Co., was the raw material. Glass envelopes, containing graphite molds and zinc, were evacuated while hot enough to outgas the graphite but not melt the zinc. At a vacuum of about 0.2 micron the envelopes were sealed off and then lowered through a furnace at 1 in. per hr so as to melt and resolidify the zinc and produce mono-crystals. One-half of one of the molds is shown in Fig. la. Each mold consisted of four pieces from a cylindrical graphite rod that was split longitudinally and transversely at its midpoints. Rectangular milled grooves 0.050 in. deep and % in. wide formed the mold cavity when the split halves were assembled with twisted wires. Fig. lb shows the specimen shape obtained when the top and bottom mold-halves were rotated 90" with respect to each other. Good fits prevented leakage and excess zinc was necessary to provide enough liquid head to fill the mold completely. In removing soft crystals from the molds it was impossible to avoid small amounts of bending. However, manipulations were carried out whenever possible with the crystals protected by grooved brass blocks. All specimens were annealed prior to testing. From the top and bottom sections of each crystal, X-ray specimens and tensile specimens 7 to 8 cm long were sawed. The tensile specimens were annealed inside evacuated tubes for 1 hr at 375°C. Next the crystals were cleaned and polished by 2-min dips in a solution of 22 pct chromic acid, 74 pct water, 2.5 pct sulphuric acid, and 1.5 pct glacial acetic acid.' Cleaning was followed by a 10-sec dip in a 10 pct caustic solution, then washed in water and alcohol, and dried. This treatment results in a bright surface covered by an invisible oxide film. The testing grips were a slotted type with set screws and were supported in a V-block during the mounting operations in order to avoid bending the crystals. A schematic diagram of the recording tensile-testing machine is shown in Fig. 2. The machine has been described elsewhere.' The head speed was 0.3 mm per sec for all tests. The crystal orientations were determined by the Greninger X-ray back-reflection method with an estimated accuracy of 1. Description of Crystal Geometry A schematic picture of a rectangular zinc mono-crystal is shown in Fig. 3. ABD designates the front edge of a basal plane (0001) of the crystal, the only active slip plane for zinc at room temperature. Of the three possible (2110) slip directions, the active one is indicated by an arrow. Cartesian coordinates are taken parallel to the specimen edges. The normal, n, to the basal plane (n is parallel to the hexagonal axis) has the direction cosines a, ß and ?. X0 = 90 — y is the angle between the longitudinal axis and
Citation

APA: J. J. Gilman  (1954)  Institute of Metals Division - Plastic Deformation of Rectangular Zinc Monocrystals

MLA: J. J. Gilman Institute of Metals Division - Plastic Deformation of Rectangular Zinc Monocrystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account