Institute of Metals Division - Plastic Deformation and Diffusionless Phase Changes in Metals-The Gold-Cadmium Beta Phase

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 576 KB
- Publication Date:
- Jan 1, 1952
Abstract
Diffusionless transformation in Au-Cd single crystals containing about 50 atomic pet Cd was investigated by means of X-ray analysis of the orientation relationships, electrical resistivity measurements, and motion picture studies of the movement of boundaries between the new and old phases during transformation. The nucleation of diffusionless transformation by imperfections and the generation of imperfections by diffusionless transformation were discussed. THAT connections exist between plastic deformation and diffusionless phase changes has long been recognized. Thus it is often possible to produce a diffusionless phase change in a temperature range, above that in which the change occurs spontaneously, by cold-working the initial phase. Certain aspects of the dislocation theory of the plastic deformation of crystalline solids also provide for a rather direct connection between the processes involved in plastic deformation and in diffusionless phase changes. Heidenreich and Shockleyl have pointed out that simple edge dislocations in f.c.c. metals are probably unstable, and that the more probable lattice imperfections, called extended edge dislocations, consist of two half dislocations separated by a distance of the order of magnitude of 100A. The region about two atomic planes thick between the half dislocations because of this stacking fault may be described as having the hexagonal close-packed structure. Presumably the stacking faults observed by Barrett" fter cold-working f.c.c. Cu-Si alloys resulted from the passage of such half dislocations through the lattice of the initial phase. It is now becoming clear that the development of a detailed theory of the atomic movements involved in diffusionless phase changes will require a consideration of the role played by lattice imperfections, just as such considerations are necessary to the understanding of plastic deformation mechanisms. This point of view has been recently set forth, for example, by Cohen, Machlin, and Paranjpe3 who pointed out the role which might be played by screw dislocations in nucleating diffusionless phase changes. The present paper reports on some aspects of the diffusionless phase change in single crystals of the beta phase alloy Au-Cd which serve to emphasize further the importance of lattice imperfections in diffusionless phase changes. The diffusionless phase change of Au-Cd possesses several remarkable features. One of these is that the interface between the high-temperature beta phase and the low-temperature orthorhombic phase typically moves with a low velocity, in contrast to the behavior observed in the transformation of austenite to martensite. Motion pictures of this slow interface motion have been prepared in the course of the work reported here. Another important feature of the Au-Cd transformation is the small amount of undercooling observed. The reverse transformation occurs on reheating to a temperature only 20" higher than the transformation temperature observed on cooling, and under some circumstances the hysteresis observed is substantially less than this. This narrow temperature range between transformation on heating and cooling is presumably in part a consequence of the fact that the transformation requires a lattice shear of only about 3". Finally, the orthorhombic product phase possesses unusual mechanical properties, as was first pointed out by olander' and Benedicks." After completion of the transformation on cooling the specimen can be severely deformed, yet on the release of load it springs back to its original shape in a rubber-like manner. Explanation of this phenomenon will require an understanding of the lattice imperfections in the orthorhombic structure and, correspondingly, of those in the initial body-centered cubic structure. Single crystals of Au-Cd alloy containing 47.5 and 49.0 atomic pct Cd were prepared from fine gold (99.95 pct purity) and chemically pure cadmium (99.99 pct purity) by melting the alloy in an evacuated and sealed fused quartz tubing and growing into single-crystal form by the Bridgman method. The Au-Cd alloy containing 47.5 atomic pct Cd undergoes a diffusionless transformation from an ordered body-centered cubic structure to an orthorhombic structure when it is cooled to about 60°C, while the reverse transformation takes place when the alloy is heated to about 80°C, according to electrical resistivity studies. The structures of these two phases have been studied by Blander,4 reinvestigated by Bystrom and Almin.e he lines of Debye photo-gram of powdered samples of Au-Cd alloy containing 47.5 atomic pct Cd prepared in this laboratory were identified and agreed fairly well with those of
Citation
APA:
(1952) Institute of Metals Division - Plastic Deformation and Diffusionless Phase Changes in Metals-The Gold-Cadmium Beta PhaseMLA: Institute of Metals Division - Plastic Deformation and Diffusionless Phase Changes in Metals-The Gold-Cadmium Beta Phase. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.