Institute of Metals Division - Ordering Reaction of the Cu4Pd Alloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 534 KB
- Publication Date:
- Jan 1, 1955
Abstract
The alloy Cu4Pd has a disordered face-centered-cubic structure when quenched from temperatures between 478ºC and the melting point (about 1100°C). Below 478ºC an ordered phase is stable. The results of a Debye-Scherrer X-ray analysis indicate that the ordered phase has a tetragonal unit cell described by the space group C24h — P42/mt with 2 Cu in 2a, 2 Cu in 2f, 4 Cu in 4j (x = 0.2, y = 0.6), 4Pd in 4j (x = 0.4, y = 0.2), and 8 Cu in 8k (x = 0.1, y = 0.3). The orientation relationship between the face-centered-cubic phase and the ordered tetragonal phase is given by: [100],,. // [130]al,. COO1Ia.d.//COO1I,,.. • The behavior of Cu,Pd is typical of ordering alloys except that the transformation is very sluggish. The increase in hardness and the microstructural and X-ray diffraction effects are interpreted in terms of coherency strains caused by the ordering. AN anomalous construction in the Cu-Pd phase diagram (Fig. 1) was reported in 1939 and has been allowed to stand without further published attention since that time. The odd figuration about the composition 10 to 27 atomic pct Pd is derived mostly from the work of Jones and Sykes.1 Evidently several features of this binary system require further study if the constitutional forms are to be well understood. The present paper includes a study of one of these features, that is, the crystal structure of a single ordered alloy containing nominally 20 atomic pct Pd. This choice of composition was suggested by the work of Harker and associates who determined the structure of Ni4Mo2 and Ni4W.3 The nature of the ordering process in Cu4Pd was studied also by observing the hardness, microstructure, and Debye-Scherrer patterns of specimens which had been aged at various temperatures after quenching from an initial disordering treatment. Experimental Methods A 20 gram ingot of Cu4Pd was made by melting spectrographically standardized copper from Johnson, Matthey, and Co., and commercially pure (99.5 + ) palladium in an argon-filled quartz tube. Chemical analysis showed that the ingot contained 80.0 atomic pct Cu. The ingot was rolled about 60 pct to a strip 0.060 in. thick and was homogenized for 16 hr at 950°C in low pressure argon. Rods cut from the rolled strip were worked into wire 0.015 in. in diameter, and specimens for hardness and microscopic examination were cut from the remaining strip. All specimens, with the exception of some of the wire, were given an initial disordering treatment by heating for 16 hr at 950°C, followed by water quenching. A 10 cm length of as-drawn wire was water quenched after being held in a temperature-gradient furnace4 for 89 days. Room-temperature Debye-Scherrer photograms were then made at points along the wire to determine the temperature below which the ordered phase was stable. Although the accuracy of temperature determination in the gradient was only about ±10 °C, the temperature gradient was sufficiently gradual that the sensitivity was much better and locations which had differed by as little as 1°C could be distinguished. An analysis of the crystal structure of the well ordered alloy was made by X-ray diffraction using a specimen cut from this wire. The change of Debye-Scherrer pattern as ordering progressed was studied by using isothermally aged samples of initially disordered wires. The wires were sealed under low-pressure argon in small quartz tubes for heat treatment. After the aging treatment, the tubes were quenched in water and photograms were made at room temperature in a 10 cm diam camera using filtered Cu kX. (A = 1.540511) Hardness was measured on a Vickers hardness tester using a 10 kg load and 2/3 in. objective lens. Reported values are the average of at least three impressions made on flat specimens 0.060 in. thick. After the hardness of a heat-treated sample had been measured, it was resealed in low-pressure argon and returned to the furnace for continued aging at the same temperature. In this way, two samples served for all aging times at each temperature. Hardness specimens which had been aged 500 hr or more were used for metallographic examination after the final aging treatment. A dilute potassium-dichromate etching solution was used.
Citation
APA:
(1955) Institute of Metals Division - Ordering Reaction of the Cu4Pd AlloyMLA: Institute of Metals Division - Ordering Reaction of the Cu4Pd Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.