Institute of Metals Division - Microstructural Properties of Thermally Grown Silicon Dioxide Layers

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. Balk C. F. Aliotta L. V. Gregor
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
644 KB
Publication Date:
Jan 1, 1965

Abstract

The structure of silicon surfaces, thermally oxi&zed in dry oxygen and in steam, was studied using the electron microscope. It was found that the structure on the original (etched) surface is retained at the outer surface of the oxide, whereas the oxide-silicon interface is smoothed out considerably. This supports the idea that, both in oxygen and in steam, the oxidation reaction occurs at the oxide-silicon interface. Mechanical damage of the original silicon surface affects the rate of oxidation. It also changes the chemical properties of the oxide, as shown by the enhanced rate of etching in buffered HF at the locations of damage. However, the oxide at the originally damaged surfaces still exhibits a high electrical breakdown strength. Exposure of thermal oxides to P205 or BzOs vapor, which will yieldphospho- or borosilicate layers, results in complete annihilation of all fine structure on the surface. Reaction of silicon with C02 gives a surface film which probably does not consist of pure SiO,. THERMAL oxidation of silicon yields uniform and strongly adhering oxide films which are normally amorphous and continuous. Contamination and surface imperfections have been reported to cause local crystallization and the formation of pinholes."' The parabolic-rate law of film growth observed by several workers for the oxidation both in steam and in dry oxygen at higher temperatures suggests that diffusion of one or more reactants through the oxide is the rate-deter mining step. One of the dif-fusants is an oxygen species and oxide is continuously formed at the oxide-silicon interface. This was concluded for high-pressure steam oxidation by Ligenza and spitzer5 from an infrared-absorption study of the isotopic exchange of oxygen. Jorgensen arrived at the same conclusion for the oxidation in dry oxygen by measuring during oxidation the resistance change between silicon and a porous platinum marker electrode in the oxide. Recently, Pliskin and Gnall' reported similar conclusions concerning the growth mechanism from controlled etch studies using a phosphosilicate marker. The work communicated in the present paper was aimed at studying oxide growth on locally damaged silicon substrates and relating it to the chemical behavior and electrical breakdown properties of the films. Since etched and oxidized silicon surfaces normally appear to be very smooth when examined by optical microscopy except for some occasional pits, it was decided to use the electron microscope as a tool. In this way, the detection of surface roughness and damage on a scale comparable to or smaller than the thickness of the film is possible. Also, the microstructure of the original substrate surface constitutes a built-in marker which represents a minimum of perturbation to the growing oxide layer, and no foreign material is introduced. Thus information on surface reactions and additional evidence on the location of oxide formation in steam and in oxygen could be obtained. EXPERIMENTAL Electron micrographs7 were obtained using a Philips EM100 electron microscope. Collodion surface replication was used since this is a nondestructive technique and thus permits replicating the same surface at different stages of processing. In order to establish the effect of different treatments it was found essential to make successive observations of the same area by using a reference point. Reference points were conveniently provided by scribing a small v mark on the original surface with a silicon carbide tip. This procedure yields damaged and damage-free areas near the reference point. Upon replication, the samples were thoroughly cleaned before subjecting them to the next process step. Mechanically lapped silicon wafers (Dow-Corning, 100 ohm-cm p-type, cut perpendicular to the (111) direction) were chemically polished in a rotating beaker with a mixture of 1 part HF (48 pct), 2 parts glacial acetic acid, and 3 parts HNO3 (70 pct) by volume. This procedure yields a smooth surface with a faint "orange peel'' structure due to a "ripple" less than 20002i deep. Oxidation in steam or oxygen was carried out in an Electroglas tube furnace. Steam oxidations were always preceded and followed by a brief exposure to oxygen at the same temperattre. The thicknesses of the oxide films under 3000A were determined with a Rudolph Model 436-2003 ellipsometer,' whereas those over 3000A were measured using the VAMFO technique. In the present study, a solution of 300 g of N&F in 25 ml HF (48 pct) and 450 ml water was used to detect areas of increased chemical reactivity in the
Citation

APA: P. Balk C. F. Aliotta L. V. Gregor  (1965)  Institute of Metals Division - Microstructural Properties of Thermally Grown Silicon Dioxide Layers

MLA: P. Balk C. F. Aliotta L. V. Gregor Institute of Metals Division - Microstructural Properties of Thermally Grown Silicon Dioxide Layers. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account