Institute of Metals Division - Microcalorimetric Investigation of Recrystallization of Copper

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. Gordon
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
963 KB
Publication Date:
Jan 1, 1956

Abstract

An isothermal jacket microcalorimeter, supplemented by metallographic, microhardness, and X-ray measurements has been used to study the isothermal annealing of high purity copper after room temperature tensile deformation. The amount of stored energy released during annealing has been measured as a function of deformation in the range 10.8 to 39.5 pct elongation. The data have shown the major heat effect to be associated with recrystallization and have allowed an analysis of the recrystal-lization kinetics and the calculation of activation energies of recrystallization. WHEN a metal is deformed plastically, some of the energy expended is dissipated as heat during the working process, while the remainder is stored within the metal in the form of lattice distortions and imperfections. During subsequent heating of the metal, the distortions and imperfections can be largely annealed out and the associated stored energy released as heat. It is apparent that measurements of the evolution of stored energy during such annealing may produce important information concerning the nature of the annealing mechanisms and the imperfections involved. Some excellent studies of this type have been made in the past, notably those of Taylor and Quinney,' Suzuki,2 Bever and Ticknor,3 Borelius, Berglund, and Sjöberg,4 and Clarebrough et al.5,6 None of this work, however, employed isothermal techniques, with the exception of the Borelius studies' in which only the early annealing stages were investigated. Since isothermal measurements, as compared with heating or cooling curve, have the merits that 1—they reveal the kinetics of a process more clearly, 2—the results obtained are more easily applied to theory, and 3—most fundamental investigations of annealing using techniques other than calorimetry have been carried out isothermally, it was considered important to apply calorimetry to the study of the isothermal annealing of metals. Accordingly, an isothermal jacket calorimeter of the Borelius type,' supplemented by metallographic, hardness, and X-ray measurements, has been used to study the annealing of high purity copper after room temperature tensile deformation. Experimental The microcalorimeter has been described fully elsewhere." Briefly, the specimen to be studied is placed in a constant temperature environment of virtually infinite heat capacity achieved, as shown in the drawing of Fig. 1, by means of a vapor thermostat. A high thermal resistance is provided between the sample and the environment and a sensitive differential thermopile (see Figs. 2 and 3) arranged with half its junctions in contact with, and thus at the constant temperature of, the environment, and the other half in contact with the sample. A reaction in the sample develops a small difference in temperature, AT, across the thermopile, which is followed by a recorder-galvanometer set-up as a function of time, t, and is converted to reaction heat per unit time, P, by the use of the equation AT P=a?T + b AT dt The constants, a and b, in Eq. 1 are determined by a simple calibration, making use of the Peltier heat developed by a small current run through the junction of a thermocouple located in an axial hole in the specimen (Fig. 2). In its present form, the limit of sensitivity of the calorimeter is a heat flow of 0.003 cal per hr. The copper used was the spectroscopically pure metal supplied by the American Smelting and Refining Co. in the form of 3/8 in. diam continuously cast rod, reported to be 99.999+ pct Cu. A small amount of the copper was available at the start of this work and is referred to hereafter as lot A. A second batch, lot B, was obtained later, most of the results described subsequently being for this lot. As will be seen, there is some indication that lot A was somewhat purer than lot B, but it is not known whether this difference was present in the as-received metal or arose during subsequent handling. The two lots of copper were remelted and cast into two 1½ in. diam ingots in vacuo, using high purity graphite crucibles and molds. The ingots were upset several times to break up the large cast grains, and then rolled and swaged to rods 0.391 in. in diameter, using several intermediate anneals with about 40 pct reduction in area between anneals. The penultimate anneal was 2 hr at 350°C. X-ray examination showed no marked general preferred orientation in the resulting rods. The grain structure typical of the two rods is shown in the micrograph of Fig. 4." It was found to be virtually im- possible to get an unambiguous measure of the absolute grain size in the two annealed rods because of the profusion of annealing twins and the lack of regularity of the grain boundaries. However, counts of the number of boundaries intersected per unit length along a random line on a polished section, making a correction for the proportion of boundaries (about half) estimated to be twin boundaries, gave a figure of about 0.015 mm for the average grain diameter. The grain size of the rod from lot A was about 5 pct smaller than that from lot B. The rods were cut into 1 ft long bars and these deformed in tension at room temperature to various total elongations in the range 10.8 to 39.5 pct. A strain rate of 1 pct per min was used. The deformed bars were then stored in a dry ice chest until such time as samples were to be cut from them. Five bars deformed as indicated in Table I were used for the subsequent tests. In all cases, all the calorimeter.
Citation

APA: P. Gordon  (1956)  Institute of Metals Division - Microcalorimetric Investigation of Recrystallization of Copper

MLA: P. Gordon Institute of Metals Division - Microcalorimetric Investigation of Recrystallization of Copper. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account