Institute of Metals Division - Kinetics of the Austenite?Martensite Transformation

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. C. Fisher J. H. Hollomon D. Turnbull
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
11
File Size:
819 KB
Publication Date:
Jan 1, 1950

Abstract

Application of the concepts of nu-cleation and growth to the analysis of experimental transformation data has led to valuable descriptions of phase transformations, an outstanding example being the transformation austenite —* pearlite which has been examined with particular care by Mehl and co-workers.&apos;-5 In addition to the pearlite transformation, the proeutectoid fer-rite and proeutectoid carbide transformations are known to proceed by nucleation and growth. Martensite, on the contrary, until recently was thought to form by a mechanism involving neither nucleation nor growth; however, extension of standard nucleation theory6 suggests that martensite, bain-ite, and the other products of austenite decomposition all grow from nuclei in the parent phase. The theory that martensite forms by nucleation and growth is strongly supported by recent experimental work of Kurdjumov and Maksimova.7 The concepts of nucleatioli and growth have been fruitful also in providing a sound basis for quantitative theoretical treatments of the kinetics of phase transformations. For example, Volmer and Weber8 and Becker and Döring9 developed the theory of nucleation from fundamental considerations to a point where excellent agreement was obtained with the results of experiments on the condensation of supercooled vapors. As a result of their analysis, the kinetics of vapor-liquid transformations now can be predicted. It seems probable that application of the theories of nucleation and growth to a quantitative study of austenite decomposition similarly will clarify the nature of the individual transfor: mations involved, and will enable the calculation of austenite transformation kinetics. In the present paper, the theories of nucleation and growth are applied to the austenite ? martensite transformation in steels. The analysis begins with a discussion of nucleation in single component systems. Martensite appears to be coherent with the parent austenite, hence the nucleation theory is modified to include the effects of elastic distortion. Nucleation in the two component iron-carbon system then is discussed, for most steels are primarily alloys of these two elements. Finally, M. temperatures and martensite transformation curves are calculated for each of several alloy steels of varying carbon and chromium content, and are compared with those determined experimentally by Lyman and Troiano10 and Harris and Cohen.11 Nucleation Theory NUCLEATION IN SINGLE COMPONENT SYSTEMS6,12-14 The work required for reversible formation of a region of phase within the parent a phase is expressed conveniently as the sum of two terms: W1 = Aa, the product of the area of the interface and the interfacial free energy, and W2 = VAf, the product of the volume of the region and the free energy increase per unit volume associated with the transformation. The total work is therefore W = Aa + VAf. When a is more stable than ß, Af is positive and W increases without limit as the volume increases. The transformation a ?ß does not occur. It is nevertheless true that small regions of phase ß enjoy temporary existence here and there in the a. The equilibrium number of ß regions of given size is proportional to exp(— W/kT) per unit volume of a, assuring that larger (ß regions occur with diminishing probability. When a is less stable than ß, Af is negative and W passes through a maximum as V increases. Assuming for simplicity that regions of ß are spherical, as is true when the interfacial tension is isotropic and there are no elastic strains, W = 4r2a + (4/3)*r3Af The maximum value of W is W* = 16iro3/3Af2 [1] for regions with radius r* = -2o/Af. [2] For single component condensed systems it has been shown14 that the steady rate of nucleation of 0 per unit volume of untransformed a is nearly proportional to exp[- (W* + Q)/kT] where Q is the activation energy for the unit processes of adding or removing one atom from an embryo or nucleus. If To is the temperature at which a and ß are in equilibrium, the rate of nucleation is a maximum at a temperature 0 < T < To where (W* + Q)/kT is a minimum. P regions smaller than critical size are called embryos; they tend to grow smaller and disappear, only exceptionally growing larger. Regions equal to or larger than critical size are called nuclei. A critical size nucleus may grow indefinitely large or may shrink back to a, either process decreasing the free energy of the region.
Citation

APA: J. C. Fisher J. H. Hollomon D. Turnbull  (1950)  Institute of Metals Division - Kinetics of the Austenite?Martensite Transformation

MLA: J. C. Fisher J. H. Hollomon D. Turnbull Institute of Metals Division - Kinetics of the Austenite?Martensite Transformation. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account