Institute of Metals Division - Kinetics of Reaction of Gaseous Nitrogen with Iron Part II: Kinetics of Nitrogen Solution in Alpha and Delta Iron

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. Grieveson E. T. Turkdogan
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1710 KB
Publication Date:
Jan 1, 1964

Abstract

Experimental results are presented for the rate of solution of nitrogen in a iron in the temperature range 750° to 873°C and in 6 iron in the temperature range 1410° to 1470°C. It is shown that the rate controlling process is diffusion of nitrogen into the iron. The diffusiting of nitrogen in a and 6 iron is derived from the results, and the temperature dependence of the diffusivity is represented by the equation D = 7.8 x e- 18,900/RT sq cm per sec. The solubility of nitrogen in a and 6 iron, in equilibrium with 1 atm pressure of nitrogen, has been measured. Using these results and other available data, it is found that the variation of the logarithm of nitrogen solubility with the reciprocal of absolute temperature is nonlinear. In an Appendix, some results of Darken and Smith are presented for the rate of solution of nitrogen in iron using ammonia + hyidrogen mixtures. These data also support the view that diffudsion of nitrogen in iron is the rate-controlling process when ammonia + hydrogen mixtures are used. A considerable effort has been made to obtain data on the solubility1-5 and diffusivity of nitrogen in a iron6-l2 because an understanding of the effect of nitrogen on the properties of steel must be based on an accurate knowledge of the properties of nitrogen in pure iron. However, no information is available concerning the kinetics of solution of nitrogen in a and 6 iron. Recently the authors13 have investigated the rate-controlling mechanism operating in the kinetics of solution of nitrogen in y iron. This study was directed to determine the rate-controlling processes for similar reactions with a and 6 iron as well as to establish values for the solubility of nitrogen in equilibrium with nitrogen gas in a and a iron. EXPERIMENTAL The procedure used in experiments to determine the rate of solution in cylindrical iron rods was the same as that described in a previous communication.13 Ferrovac E grade iron used in all experiments contained the following impurities in weight percent: C, 0.005; Mn, 0.001; P, 0.002; S, 0.006; Si, 0.006; Ni, 0.025; Cr, 0.002; V, 0.004; W, 0.02; Mo, 0.01; Cu, 0.001; Co, 0.01; 0, 0.007. After cleaning the surface, the iron rods were treated in an atmosphere of purified hydrogen for 17 hr before the reacting gas was introduced for known experimental times. After quenching, the samples were sectioned radially and analyzed for nitrogen. In addition to experiments using rods, iron foils were used in the measurements of solution rates of nitrogen in a iron. The foils of two different thicknesses were prepared by cold rolling Ferrovac E grade iron cylindrical rod to 0.051 and 0.152 cm. Foil samples were used in a rectangular form 5 cm long and 1.25 cm wide. The specimens were thoroughly cleaned of surface oxide with fine emery cloth and degreased with carbon tetrachloride immediately before entry into the furnace. The experimental procedure was the same as that used in the study with rods. At the completion of an experiment, the foil samples of the nitrogenized iron were analyzed for nitrogen after discarding 0.3 cm from the perimeter of the specimen. Iron foils were nitrogenized and denitrogenized in the a and 6 range with a gas mixture of 95 pct N and 5 pct H for times varying from 5 min to 2 hr. Results obtained for the average composition of nitrogen in iron for these experiments are presented in Fig. 1. Prior to the denitrogenization experiments, the samples were saturated with nitrogen at 1000°C and 0.67 atm N, giving a uniform nitrogen concentration of 0.0204 pct. According to the known a-y phase boundary in the Fe-N system,14 this composition lies within the ferrite region at temperatures 750" to 850°C. Use of this initial nitrogen content insured that reaction occurred between the gas and a single solid phase, a iron. Examples of the results for the mean concentrations of nitrogen in cylindrical iron rods, 0.356 cm radius for both the a and 6 ranges are given in Fig. 2. Typical examples of the results obtained for the radial distributions of nitrogen in rods are presented in Fig. 3. It appears that the results for radial distributions can be extrapolated to constant surface compositions which agree with the equi-
Citation

APA: P. Grieveson E. T. Turkdogan  (1964)  Institute of Metals Division - Kinetics of Reaction of Gaseous Nitrogen with Iron Part II: Kinetics of Nitrogen Solution in Alpha and Delta Iron

MLA: P. Grieveson E. T. Turkdogan Institute of Metals Division - Kinetics of Reaction of Gaseous Nitrogen with Iron Part II: Kinetics of Nitrogen Solution in Alpha and Delta Iron. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account