Institute of Metals Division - Internal Friction of Tungsten Single Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 451 KB
- Publication Date:
- Jan 1, 1965
Abstract
Internal-friction peaks have been observed in tungsten single crystals at about 300° and 400°C. The characteristics of these peaks are similar to interstitial peaks observed in other bee metals; therefore, the origin of these peaks appears to he the Snoek mechanism. The interstitial responsible for the peak at about 300°C has not been identified. Carburizing increases the magnitude of the peak at about 400°C; consequently, it appears reasonable to suppose that the specific interstitial associated with this peak is carbon. The activation energies associated with the 300° and 400°Cpeaks are about 35,000 and 45,000 cal per mole, respectively. INTERNAL - friction peaks resulting from the stress-induced diffusion of interstitials (Snoek relaxation peaks) have been frequently observed in bee metals.1-5 Attempts to detect Snoek relaxation peaks in tungsten have, however, not been fruitful.' Failure to find Snoek peaks in sintered tungsten can perhaps be attributed to one or more of the following difficulties: a) the relatively low purity of the sintered tungsten; b) the lack of extensive metallurgical knowledge about tungsten-interstitial alloys, such as suitable interstitial dosing and quenching procedures; and c) the inconsistency of some of the interstitial analyses of tungsten, which reflects itself in one's inability to be sure of the nature of the specimens. This present investigation did not overcome all of these difficulties for successful tungsten internal-friction measurements. Some of these difficulties still persist and new difficulties were encountered during the course of this investigation. Nevertheless, the use of electron-beam tungsten single crystals having somewhat greater purity levels than sintered tungsten combined with appropriate carburizing and quenching procedures permitted a reasonable attempt to be made. As a consequence, internal-friction peaks were observed in these tungsten single crystals at about 300° and 400°C. These peaks were found to be unstable, since they annealed rapidly away during a sequence of internal-friction measurements. Hence, it was necessary to construct an apparatus having a faster heating rate to study some of the details of these peaks. From the behavior of these peaks as well as our knowledge of similar peaks in other bee metals, one can reasonably conclude that these peaks are caused by residual interstitial impurities within these crystals. Further investigation of these peaks after the application of various metallurgical treatments lent credence to this supposition. EXPERIMENTAL TECHNIQUE The internal friction of tungsten single crystals was measured using two different pieces of apparatus both of which are of essentially the same conventional design, namely the KE type of torsion pendulum. The important difference between these two types of apparatus was in the attainable heating rate and method of protection of the specimen from atmospheric contamination. The apparatus designated "number 1" was enclosed in a vacuum chamber which was heated by an externally mounted furnace. It had a slow rate of heating which was estimated to be about 4°C per min from room temperature to about 350°C and then about 1°C per min to 600°C. The internal friction of tantalum was measured with this apparatus and the established Snoek peaks were found.' These tantalum peaks in the temperature range from room temperature to 400° C served as a check for the apparatus. The apparatus designated "number 2" having a faster heating rate than number 1 was not elaborate. It consisted of a mounted nickel tube to which split heating elements were attached. Argon was used as the protective atmosphere. The measured heating rate was about 12° to 15°C per min whereas the cooling rate was somewhat slower at about 10° C per min because of the increased difficulty encountered in stabilizing the temperature. No surface oxidation of the specimen was noted after any test. This apparatus was also checked with the known peaks of tantalum.1 The preparation of the single-crystal specimens for internal-friction measurements consisted of centerless grinding the crystals from an approximate 0.200 in. diameter to 0.030 to 0.040 in. in diameter, and then electropolishing them to about 0.020 in. in diameter. Single crystals processed in this manner are designated as being in the virgin condition. Since the length of crystal varied from 3 to 9 in., the test frequency varied from about 1 to 2 cps. The frequencies of measurement, axial orientations, and chemical analyses for the various crystals are listed in Table I. The controlled addition of carbon into tungsten is a difficult problem. Attempts to find the critical conditions necessary for an equilibrium treatment were not fruitful. Therefore, a simple nonequi-librium method was used. The addition of carbon to these crystals consisted of appropriately combining three treatments—carburizing to achieve a case, annealing to partially dissolve the carbon into the
Citation
APA:
(1965) Institute of Metals Division - Internal Friction of Tungsten Single CrystalsMLA: Institute of Metals Division - Internal Friction of Tungsten Single Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.