Institute of Metals Division - Hardness Anisotropy and Slip in WC Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 249 KB
- Publication Date:
- Jan 1, 1965
Abstract
The lrnrdness of WC crystals has been measured with the Knoop indenter at loads of 100 and 500 g on the (0001) and (1070) planes. The hardness as tneasitred on the basal plane is 2400 kg per sq mm and shows little anisotropy. The hardness on the prism plane, however, shows a marked orientation dependence, with a low value of 1000 kg -per sq mm when the long axis of the Knoop indenter is oriented parallel to the c axis and a high value of 2400 kg per sq mm when the indenter is perpendicular to the c axis. Slip lines (Ire observed surrounding the microhardness indentations and they show slip on (1010) planes, probably in [0001] and (1120) directions. This slip behavior can be explained by the crystal structure of TVC, which is simple hexagonal with a c/a ralio of 0.976. The hardness anisotropy call be explained by [0001]{1010} and (1130) {10l0] slii) and the resolved shear-stress analysis of Daniels and Dunn. HARDNESS anisotropy is a well-known phenomenon and has been reported for many metals, with both cubic and hexagonal structure.1-6 For hexagonal tungsten carbide, WC, a wide range of hardness values is reported in the literature. For example, Schwarzkopf and Kieffer7 give a hardness of 2400 kg per sq mm and report a value of 2500 kg per sq mm by Hinnüber. Foster and coworkerss give the average Knoop microhardness as 1307 kg per sq mm with a maximum value of 2105 kg per sq mm. Although these values and the structure of WC suggest the likelihood of hardness anisotropy, no such measurements have been made. We first detected a large apparent hardness anisotropy in WC crystals about 75 p large, in over-sintered cemented tungsten carbide. Prominent slip lines also occurred around many indentations. This report presents further observations and interpretations of hardness anisotropy and slip in WC crystals obtained from Kennametal, Inc. Both Knoop and diamond pyramid indenters were used on a Wilson microhardness tester with loads of 100 and 500 g. EXPERIMENTAL RESULTS The carbide crystals tended to be triangular plates parallel to the (0001) basal plane of the hexagonal structure. The side faces were parallel to the ( 1010) prism planes. Specimens were mounted approximately parallel to these two types of faces and metallographically polished. Laue back-reflection X-ray patterns were used to orient the specimens, which werethen ground to within ±1 deg of the (0001) and (1010) planes. The Knoop hardness values measured on the basal plane are plotted in Fig. 1. There is only a small anisotropy, with a hardness range of 2240 to 2510 kg per sq mm. The additional points at angles from 52.5 to 67.5 deg confirm the sharp minimum hardness at 60-deg intervals, consistent with the sixfold hexagonal symmetry. The average hardness of all values obtained on the basal plane is 2400 kg per sq mm. While the basal plane shows only slight anisotropy, the (1010) plane exhibits marked hardness anisotropy, from 1000 to 2400 kg per sq mm. Fig. 2 shows the hardness as a function of the angle between the long axis of the indenter and the hexagonal c axis, the [0001] direction. The minimum and maximum occur when the indenter is oriented parallel and perpendicular to the [0001] direction, respectively. The anisotropy of the prism plane is contrary to that reported for hexagonal zinc and hard- However, the basal-plane anisotropy is similar to these two metals.1'2 To check the accuracy and reproducibility of the measurements, a series of fifteen impressions was made at 100-g load in the same orientation in the same area of the specimen surface. The average for all was 2040 kg per sq mm, with a range of 1950 to 2130 kg per sq mm, giving an accuracy of about ± 5 pct. Thus the slight anisotropy on the basal plane is almost within experimental error. Fig. 3 shows slip lines around the Knoop indentations on the basal plane. The slip traces are in directions of the type (1130). The presence of slip steps on the basal plane indicates that the slip direction lies out of the (0001) plane. Because WC has a c/a ratio of 0.976,' the shortest slip vector is [0001], which suggests slip systems of the type [0001] (1010). Fig. 4 shows slip lines around the Knoop intentations on the (1010) plane. These slip lines are inconsistent with [0001] slip but can be
Citation
APA:
(1965) Institute of Metals Division - Hardness Anisotropy and Slip in WC CrystalsMLA: Institute of Metals Division - Hardness Anisotropy and Slip in WC Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.