Institute of Metals Division - Discussion: Effect of 500° Aging on the Deformation Behavior of an Iron-Chromium Alloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 1
- File Size:
- 79 KB
- Publication Date:
- Jan 1, 1965
Abstract
Robin 0. Williams (Oak Ridge National Laboratory)— The authors have questioned the degree to which the coherency strains between the iron-rich and chromium-rich phases are isotropic as proposed in Ref. 5 on the basis of the difference between the elastic properties of the two phases. The relative magnitude of the stresses is determined by the moduli as shown by Eqs. [2], [3], and [4] of Ref. 34. However, the moduli of the two phases have no direct bearing on the uniformity of either the stress or strain within either phase. The idea that the strains are isotropic within each phase (but normally of different magnitude and always of different sign) is based entirely upon the experimental observation that X-ray line broadening has not been detected even when the particles become rather large. It has not proven possible to grow the particles sufficiently large that they lose coherency. Based upon this lack of line broadening one can estimate an upper limit for the nonuniformity of the strains within each phase as follows. It is considered possible to detect line broadening if it is as great as 10 pct of the separation of the K, doublet for the (211) line using chromium radiation. The doublet separation would correspond to a total strain of 0.0017 such that the total variation of lattice parameter relative to the average lattice is now k0.05x0.0017 or something less than ± * For the present case the strain in each phase is roughly 0.002 such that the variation of strain within a phase will not exceed 5 pct. It is stated that the expression derived for strengthening for the hydrostatic straining as observed in this system would substantially overestimate the magnitude due to dislocation flexure. This is contrary to the conclusion reached in the original paper34 for the present range of particle sizes. What is the lowest temperature at which a has been observed to form in this alloy? M. J. Marcinkowski, R. M. Fisher, and A. Szirmae (nutlzors' reply)— -Williams' arguments based on X-ray findings for a chromium-rich precipitate and an iron-rich matrix strained to a common lattice parameter are certainly convincing. This being the case, there are no shear components of strain associated with the precipitate-matrix aggregate to interact with the shear components of the dislocation stress fields, contrary to the opinion expressed by the present authors. On the other hand, the present authors, in spite of this error, did not expect the shear interactions to be significant. The chief objection to Williams' model in the present case is that the various segments of the dislocation line are assumed to pass from one potential valley to the next independently of neighboring segments. This is only true for a highly flexible dislocation line, i.e., one whose radius of curvature is something less than the center to center distance between precipitate particles which amounts to about 90A in the present alloy. In order to maintain this curvature, an externally applied shear stress of at least 230,000 lb per sq in. would be required or about four times the observed stress. It is therefore concluded that the dislocation lines move rather rigidly through the lattice. This being the case, the forces on the dislocation resulting from the hydrostatic interaction between the stress fields of the edge-dislocation components and the precipitate particles should average out to zero; that is particles above the below the slip plane produce forces on the dislocation of opposite sign and therefore will cancel when averaged over the entire length of the dislocation. On the other hand, since the dislocation is not perfectly rigid, Williams' model may lead to some strengthening, but far less than that predicted. A second and equally serious objective to using Williams' strengthening model for the present alloys is that profuse wavy slip due to the motion of screw dislocations played a predominant role not only in the unaged alloys but in the fully aged ones as well. Since the screw dislocation has associated with it only shear components of stress the hydrostatic strengthening model no longer applies. In view of these arguments the present authors must reject Williams' model of strengthening as being pertinent to the present alloy system. The present authors have made no detailed study of the lowest temperature at which a forms in the quenched ferritic alloys. None was ever observed n the alloys aged at 500°C so that forma-tion must occur at temperatures higher than this and was therefore not a factor in the present study.
Citation
APA:
(1965) Institute of Metals Division - Discussion: Effect of 500° Aging on the Deformation Behavior of an Iron-Chromium AlloyMLA: Institute of Metals Division - Discussion: Effect of 500° Aging on the Deformation Behavior of an Iron-Chromium Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.