Institute of Metals Division - Crystal Orientation in the Cylindrical X-Ray Camera

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Robert W. Hendricks John B. Newkirk
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
382 KB
Publication Date:
Jan 1, 1963

Abstract

A simple method is described for determining the orientation of a single crystal by means of a cylindr cal X-ray camera. Orientation setting to within ±1 deg is attainable by a stereographic analysis of a single cylindrical Laue pattern produced by the originally randomly mounted crystal. Final precision adjustments which permit orientation of the crystal to within ±5 min of arc from the desired position can be made by the method of Weisz and Cole. A chart, originally Presented by Schiebold and schneider7 and which allows a direct reading of the two stereographic polar coordinates of the corresponding pole of a given Laue spot, has been recomputed to aid in the stereographic interpretation of the cylindrical Laue X-ray photograph. Detailed instructions for the use of the chart, a simple example, and a comparison with the conventional flat-film Laue Methods, are presented. 1 HE problem of determining the orientation of the unit cell of a single crystal relative to a set of fixed external reference coordinates is fundamental to most problems of X-ray crystallography and to many experimental studies of the structure-sensitive physical properties of crystalline materials. Several techniques for measuring these orientation relations have been developed which correlate optically observable, orientation-dependent physical properties to the unit cell. Examples of such procedures include the observation of cleavage faces or birefringence, as discussed by bunn,1 or the examination of preferentially formed etch-pits, as discussed by barrett.2 Each of these methods is limited, for various reasons, to an orientation accuracy of approximately ±1 deg—a serious limitation in some experimental studies. Several other limitations decrease the generality of these methods. Of these, perhaps most notable is the absence in many crystals of the physical property necessary for the orientation technique. The most widely used methods for determining crystal orientation are variations of the Laue X-ray diffraction method. Because of the indeterminacy of the X-ray wavelength diffracted to a given spot, the interpretation of Laue photographs is now limited almost exclusively to the procedure of using a chart to determine the angular coordinates of the corresponding pole for each spot. For the flat-film geometries, either a leonhardt3 or a Dunn-Martin4 chart is used in interpreting transmission patterns, whereas a greninger5 chart is used for interpreting back-reflection patterns. A less common method of interpreting flat-film transmission Laue photographs is by comparing the Laue pattern with the Majima and Togino standards,6 or with the revised standards prepared by Dunn and Martin.4 Although this last method is applicable only to crystals with cubic symmetry, it can be very rapid and just as accurate as the graphical methods. The primary limitation of all the X-ray methods mentioned is the relatively small number of Laue spots and zones which are recorded on the flat film. Often, few, if any, major poles appear, thus making interpretation tedious and sometimes uncertain. The use of a cylindrical film eliminates this problem. Schiebold and schneider7 prepared a chart by which the orientation of the specimen crystal could be determined from a cylindrical Laue photograph. However, it was only drawn in 5-deg intervals of each of the two angular variables used to identify the Laue spots, thus limiting the accuracy of orientation to about ±3 deg. An examination of this chart indicated that if it were drawn in 2-deg intervals, crystal orientations to ±1 deg would be attainable. Subsequent use of the replotted chart has confirmed this accuracy. It is the purpose of this paper to describe the redevelopment and use of this chart, and to point out its advantages and limitations. I) CAMERA GEOMETRY AND CHART CALCULATIONS The geometry of the cylindrical camera with a related reference sphere is shown in Fig. 1. The X-ray beam BB&apos; pierces the film at the back-reflection hole B, strikes the crystal at 0, and the transmitted beam leaves the camera at the transmission hole T. One of the diffracted X-rays intersects the film at a Laue spot L. The normal OP to the diffracting plane bisects the angle BOL between the incident and diffracted X-ray beams. The point P on the reference sphere can be located uniquely by the two orthogonal motions 6 and 8 on the two great circles ENWS and BPQT respectively. Because the Bragg angle 8 (= 90 - < BOP) is always less than 90 deg, P always remains in the hemisphere BENWS. Therefore, if every possible pole P is to be recorded on the same stereographic projection, it is necessary that the projection reference point be at T with the projection plane tangent to the sphere at B.* The great
Citation

APA: Robert W. Hendricks John B. Newkirk  (1963)  Institute of Metals Division - Crystal Orientation in the Cylindrical X-Ray Camera

MLA: Robert W. Hendricks John B. Newkirk Institute of Metals Division - Crystal Orientation in the Cylindrical X-Ray Camera. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account