Institute of Metals Division - Carbide-Strengthened Chromium Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. T. Sims J. W. Clark
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
14
File Size:
3138 KB
Publication Date:
Jan 1, 1964

Abstract

Wrought chromium-base alloys containing yttrium, cubic monocarbides of the Ti(Zr)C type, and similay alloys containing manganese and rhenium have been melted and fabricated. Strength has been studied by hot hardness and elevated-temperature tensile and rupture measurements, low-temperature ductility by tensile testing, and surface stability by oxidation testing. In additiod, studies have been conducted of the carbide stability, and of aging behavior. The carbide dispersion generates effective elevated-temperature strength, which is further enhanced hv strain-induced precipitation. The dispersion exhibits classical dissolution and aging response. The ductile-to-brittle transition temperature of these alloys is above room temperature. The alloys reported show fairly good oxidation resistance, but nitrogen contamination can cause fortnation of a hard Cr2N layer under the oxide scale. Manganese does not appear to be a promising alloying element in chromium. In the years 1945 to 1950, the metal chromium was considered as a possible base for alloy systems due to its considerably higher melting point than superalloys, its low density, its high thermal conductivity, and its apparent capacity for strengthening. However, this interest in chromium was short-lived. It was found difficult to melt and cast, to be exceptionally sensitive to the effect of minor imperfections, to have a lack of ductility at both room and elevated temperatures, and to be subject to a deleterious effect of alloying elements upon the ductile-to-brittle transition temperature.' Since then, chromium, as a practical alloy base, has remained virtually unstudied. Further, purposeful ignoring of chromium has been promoted by statements that its bcc structure would not allow it to be strengthened to useful values, when compared to the "austenitic" alloys.2 Recently, a new look has been taken at chromium-base alloy systems. Study of the literature will show that chromium, providing some of its disadvantages could be eliminated or minimized, actually has a rather attractive potential as an alloy-system base. Analysis of rather scattered data suggests that chromium is quite capable of being strengthened to high levels. Also, significant strengthening of its two sister elements in Group VI-A, molybdenum and tungsten, has been demonstrated in a number of commercial and exploratory alloys. Chromium should be similar. Since chromium does not readily form a volatile oxide like tungsten or molybdenum, it offers a much higher probability of giving birth to alloy systems with useful oxidation resistance. Concerns about possible high elemental vapor pressure have been mitigated by recent data.3 In addition, the physical properties exhibited by chromium are attractive for application as a high-temperature structural material. For instance, its thermal conductivity varies from 49 to 36 Btu-ft/hr-sq ft-°F over its range of usefulness (which is two to four times higher than most superalloys), its density is about 7.2 g per cc (20 pct less than most nickel-base alloys), its coefficient of thermal expansion varies from 4 to 8 x 10-6 per OF, and it has a relatively high modulus of elasticity, approximately 42 x 10' psi.4 Alloying studies on a chromium base in the past have usually encompassed rather sweeping solid-solution alloy additions for strengthening. This is not consistent with contemporary alloying practice in Group VI-A. For instance, molybdenum, also in Group VI-A, is primarily alloyed for strength improvement by use of heat-treatable carbide dispersions.5 Chromium and molybdenum are similar in their chemical activity and other properties. Thus, strengthening of chromium by carbide dispersions was studied. Chromium-base alloys are plagued with room-temperature brittleness, although high-purity unal-loyed chromium can be made ductile.4,8 Use of yttrium as a scavenger has done much to improve ductility and resistance to nitrogen embrittlement in chromium systems,7 so it was utilized in this program. It has also recently been found8 that small rhenium additions (1 to 5 pct) create improvement in the ductility of Type 218 tungsten wire. This is apparently related to the remarkable effect of rhenium additions near its terminal solid solubility in all Group VI-A metals.9'10 Investigation to establish if dilute concentrations of rhenium would also be effective in chromium appeared to be logical for this program. Since rhenium is too expensive to be practical in alloys for application as structural components, ductility improvements through solid-solution alloying were also sought by substitution of manganese for rhenium; manganese, like rhenium, exists in Group VII of the periodic system. The optimum amount of carbide dispersion for chromium-base alloys was obtained by analogy with molybdenum. Strengthening in molybdenum is achieved by use of Ti-Zr carbide dispersions. A
Citation

APA: C. T. Sims J. W. Clark  (1964)  Institute of Metals Division - Carbide-Strengthened Chromium Alloys

MLA: C. T. Sims J. W. Clark Institute of Metals Division - Carbide-Strengthened Chromium Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account