Health Physics for the Aboveground Uranium Miner and Producer

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Joe O. Ledbetter
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
12
File Size:
728 KB
Publication Date:
Jan 1, 1980

Abstract

INTRODUCTION Health physics as a profession really got a significant start during the Manhattan Project of World War 11. The Health Physics Society has recently published its 25th anniversary issue of the journal (June 1980). There was concern over radiation exposures during and after uranium production, especially about radium and its daughter products [Jackson 19401 and, as evidenced by the frequency of articles in the literature, there still is. The reason for this concern was expressed by Harley as "Workers engaged in the mining and pro- cessing of radium-bearing materials are exposed to dusts of the parent, to radon, and to the radon daughter products. In- haled radioactive particulates may be retained in the lung or redistributed to other organs of the body. Relatively minute de- posits of radioactive substances, particularly alpha emitters, have been clearly shown to be the etiological factor in a variety of injuries to industrial and re- search workers. " [Harley 1953] Emphasis in measurements has been placed on radium in water and radon in air, since these are the principal mobilized phases; however, it should be kept in mind that radium-containing particles do become suspended in air as aerosols and radon absorbs in liquids. Much of the uranium mining and production is being carried out aboveground. The principal difference between underground and surface (pit or leach) mining of uranium is the reversal in the relative importance of roles for the types of radiation dose. For aboveground the major radiation exposure is external gamma ray, whereas for underground it is internal alpha; for aboveground, the whole body penetrating is of greater importance than the lung alpha dose. AS a result of the politics involved and the law- suits for any and all diseases as being occupationally- caused, today , more than ever before, the successful performance of the activities connected with uranium production--before-, during-, and after-the-fact-- must include the provision of first class radiation protection. Such protection can be achieved by good measurements, thorough risk evaluations, and adequate controls. Meeting the ALARA (As Low As Reasonably Achievable) philosophy necessarily entails the determination of what is reasonable exposure. The necessary and sufficient elements of radiation safety under the ALARA dictum require a hard look at the dose versus effects data. There are times when the health physicist needs to make decisions of judgement rather than compliance with a well-defined regulation value. In order to facilitate such decisions, the real world must be separated from opinions that are merely artifacts of statistical variation and from the unprovable "what ifs" that are slanted to question the morality of any non-Luddite. UNITS VOCABULARY FOR DOSIMETRY There have been many radiation quantifying and dosimetric units introduced in the past. Fortunately, most of them did not catch on enough to become required knowledge for reading the health physics literature. The unit definitions necessary for our purposes here are the following: -curie (Ci)--unit of radioactivity equal to 3.7 x 10 10 disintegrations per second Webster&apos;s 19711 or the quantity of radionuclide that undergoes 3.7 x 10 nuclear transformations per second. Environmental levels of radioactivity are usually measured in picocuries (10-l2 Ci) per cubic meter for air and in picocuries per liter (pCi/~) for water and sometimes for air. .roentgen (R)--exposure dose of x or gamma rays that gives 1 esu of charge (either sign) to 1 cc of dry air @ STP. The roentgen is equivalent to an energy absorption of 86.7 ergs/g of air [Gloyna and Ledbetter 19691. .rad--radiation absorbed dose of 100 ergs per gram of absorber. The SI unit for absorbed radiation dose is the Gray; 1 Gy = 100 rads. orem--radiation absorbed dose of 1 rad times the quality factor (QF) for that radiation. The QF is 1 for x rays, gamma rays, beta rays, and posi- trons. For heavy ionizing particulate radiation, QF is a function of the amount of energy trans- ferred per unit length of travel, i.e. , the linear energy transfer (LET); the values of QF:LET in keV/um are as follows: 1:<3.5; 1-2:3.5-7; 2-5:7-23; 5-10:23-53; and 10-20:53-175 [Morgan and Turner 19 671 . For radiobiology, relative biological effectiveness (RBE) is recommended for use instead of the quality factor above that is for radiation protection: the RBE is the ratio of the dose of 200 kVp x rays to the dose of radia- tion in question (both in rads) to cause the same
Citation

APA: Joe O. Ledbetter  (1980)  Health Physics for the Aboveground Uranium Miner and Producer

MLA: Joe O. Ledbetter Health Physics for the Aboveground Uranium Miner and Producer. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1980.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account