Geophysics - Seismic-Refraction Method in Ground-Water Exploration

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1119 KB
- Publication Date:
- Jan 1, 1959
Abstract
IN the course of an investigation directed toward expanding ground-water facilities in Essex and Morris counties, New Jersey, the Board of Water Commissioners of the city of East Orange authorized a seismic-refraction survey' for the purpose of de-lineating bedrock topography below unconsolidated overburden. Results of the survey were highly satisfactory and led to the preparation of a comparatively detailed bedrock contour map. Knowledge of the bedrock depth and configuration was an important aid in selection of sites for test drilling. The portion of the East Orange Water Reserve under consideration is in the flood plain of the Pas-saic River about 10 miles west of Newark, N. J. The flood plain is about 175 ft above mean sea level and is bordered by low hills rising to elevations of approximately 250 ft. The bedrock underlying the Water Reserve consists of sandstone and shale of the Triassic Brunswick formation and is covered everywhere by deposits of unconsolidated glacial outwash sand and gravel, lacustrine clay, and recent river silt as much as 150 ft thick. Yield of wells in the sandstone and shale averages 100 to 200 gpm. Since production wells constructed in the sand and gravel aquifer in the buried river valley shown on the contour map (Fig. 1) yield 300 to 1400 gpm, it was proposed to locate additional production wells in this buried valley, where the yields per well would be maximum. In 1939 and 1946 the East Orange Water Dept. had electrical-resistivity surveys made to determine depths to bedrock. From the resistivity data the exploration company prepared a bedrock contour map. A well field expansion program begun in 1955 utilized this information to locate sites for test wells along a predicted northward extension of the buried valley in which existing production wells are located. After several test wells (wells 201-205) had been drilled, it became apparent that the resistivity information was unreliable." For example, test well 201 recorded bedrock at a depth of 72 ft, whereas the resistivity depth determination was 130 ft. As a consequence, the test drilling program was temporarily suspended and a seismic survey was under- taken to determine the topography and extent of the buried valley known from well records to underlie the existing well field. In the first phase of this study, several seismic shot point locations were placed at sites where well logs had been obtained previously. This procedure is necessary in a new area to determine whether the seismic method is applicable and what degree of accuracy is to be expected. At the East Orange Water Reserve, depths obtained from the shot points near test wells 202, 203, and 204 were within 8 to 11 pct of the depths logged (Table I). With this assurance that accurate results could be obtained, additional seismic spreads were located on the Water Reserve. Using a portable refraction seismograph, in the fall of 1955 a crew of four men shot a total of 29 reversed seismic spreads in a period equivalent to six field days. Charges as heavy as 3 1b of 40 pct dynamite were necessary at a few places to overcome ground vibrations caused by traffic on nearby highways. At most other sites, a 1-1b charge was sufficient. Travel-time plots were made for all spreads, and depths and true velocities were calculated according to formulas for multiple sloping layers by Ewing, Woollard, and Vine.' The plot of spread 7 (Fig. 2) is typical of the short spreads in which bedrock was shallow—about 50 ft in this case. Where there were not enough arrivals through the bedrock to define the high velocity bedrock line, the spreads were lengthened. This was done by placing shots on line several hundred feet away from each end of the line of geophones. It was then possible to construct complete reverse plots for both short and extended shot points (see spread 27, Fig. 3). Four individual depths were calculated from each extended spread. Three and in some cases four seismic layers were observed. The surficial layer had a velocity range of 900 to 1200 fps, the lowest velocity recorded. This seismic layer is above the water table and is interpreted as recent river silt. The bedrock had the highest velocities, which ranged from 10,600 to 16,400 fps. Intermediate velocities ranged from 4500 to 6800 fps. In every case the intermediate layer was within
Citation
APA:
(1959) Geophysics - Seismic-Refraction Method in Ground-Water ExplorationMLA: Geophysics - Seismic-Refraction Method in Ground-Water Exploration. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.