Geology - Uranium Mineralization in the Sunshine Mine, Idaho

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Paul F. Kerr Raymond F. Robinson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
17
File Size:
1799 KB
Publication Date:
Jan 1, 1954

Abstract

Uranium mineralization occurs in the footwall of the Sunshine vein from the 2900 to the 3700 level. Veinlets of uraninite associated with pyrite and jasper have been so extensively divided and recemented that units more than a few feet in length are seldom observed. The wall rock is St. Regis quartzite of the Belt series. The age of the uraninite, on the basis of isotopic analyses, is 750 * 50, which agrees with geological data suggesting that phases of the Sunshine mineralization are pre Cambrian. THE Sunshine mine in the Coeur d'Alene district, Idaho, is well known for its silver-bearing veins but prior to the summer of 1949 had not been recognized as a possible source of uranium. At that time, during a geiger counter reconnaissance by T. E. Gillingham, R. F. Robinson, and E. E. Thurlow, high radioactivity was noted and radioactive specimens were collected from the footwall of the Sunshine vein.' The detection led to the identification of uraninite-bearing veins, since explored jointly by the Atomic Energy Commission and the Sunshine Mining Co. After the occurrence was noted, the geology of the uranium deposit was studied by the Sunshine staff, and a laboratory examination of the ores was conducted at Columbia University. Several types of laboratory work were undertaken. Differential thermal curves were made of selected siderite samples and results from many more were secured through the work of Mitcham.2 X-ray diffraction and X-ray fluorescence analyses were employed on uraninite, jasper, and siderite. Chemical analyses were made through the cooperation of the Division of Raw Materials of the Atomic Energy Commission. General Geological Features Several silver-bearing veins cut the overturned north limb of the Big Creek anticline as mapped by Shenon and McConne1,³ while the Osburn fault, a long-recognized regional feature about a mile away, marks the north boundary of the Silver Belt. The Sunshine vein, Fig. 1, has a south dip more or less parallel to the 60" axial plane of the fold and cuts rocks of the Belt. Series, starting with the Wallace formation near the surface, continuing downward through the St. Regis formation, and probably extending into the Revett quartzite which lies below the bottom or 3700-ft level. The limb of the anticline is locally modified by secondary folds, one being prominently exposed in the uranian area along the Jewel1 crosscut near the Sunshine vein. Crumpling of the limb resulted from compression which formed the anticline and probably preceded the faults in which the vein deposits accumulated. Evidence of drag along these faults points to reverse movement in the uranium-bearing area and elsewhere. This is true of major faults in the mine workings, and the majority of faults which can be mapped, as pointed out by Robinson.' The St. Regis formation, as measured in the mine, appears to have an initial thickness of some 2000 ft, but the apparent thickness due to thickening during folding is some 3400 ft. Along the Sunshine vein the purple and green rocks characteristic of the Wallace formation in the nearby Military Gulch section p. 37 of ref. 5) have been completely bleached because of introduced sericite. Hydrothermal solutions acting on the wall rock have substituted for the original color a pale greenish cast, although no pronounced mineralogical change has resulted, as Mitcham has observed.' The silver and the uranium depositions appear to belong to distinct epochs resulting from several periods of emplacement. Likewise, multiple periods of deformation account for the faulting. Uraninite is generally associated with silicification, while silver . mineralization accompanies carbonate veins. Rarely, uraninite may be found in a matrix of siderite. Ordinarily uraninite formed prior to ar-gentian tetrahedrite. Where clusters of veins form a stockwork, uraninite-jasper veins often favor one trend while tetrahedrite-siderite veins favor another. During deformation, brecciation of the St. Regis quartzite provided openings between broken rock fragments for precipitation from vein-forming solutions. Fractures due to major breaks were filled during the first stages of vein formation, while later deformation displaced the first veins and provided new channels along which further mineralizing solutions proceeded. The uraninite veins, as the first formed, have suffered fracturing, displacement, and segmentation. Uranian vein segments uncut by faults and more than a few feet in length are rare or nonexistent. Siderite veins are more massive and often extend without a break for tens and even hundreds of feet. In general they show much less segmentation. While the siderite is usually later, there is an overlap in the periods of deposition, some earlier siderite veins being extensively segmented in much the same way uraninite veins have been broken. Vein silica is more extensively distributed than the uranium and iron mineralization it carries. Along the vein course concentrations of uraninite frequently fade away and barren white quartz continues, the transition often occurring within a few feet along strike or down dip. An example appears on the 3700-ft level where a uraninite vein, see Fig. 2a,
Citation

APA: Paul F. Kerr Raymond F. Robinson  (1954)  Geology - Uranium Mineralization in the Sunshine Mine, Idaho

MLA: Paul F. Kerr Raymond F. Robinson Geology - Uranium Mineralization in the Sunshine Mine, Idaho. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account