Further Discussion of Paper Published in Transactions Volume 216 - A Laboratory Study of Rock Bre...

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1759 KB
- Publication Date:
Abstract
A full scale field experiment on cathodic protection of casing answers questions concerning (1) the proper criteria for determining current requirments, (2) the amount of protection provided by different currents, and (3) the transfer of current at the base of the surface pipe. Three dry holes in the Trico pool in Rooks County, Kans., were selected for cathodic protection tests. The three holes were in an area where casing failures opposite the Dakota water sand often accur in less than a year. Examination of the electric togs showed the wells to be similar to other wells in the field where casing in four of seven producing wells has failed. The three holes were cleaned out and cased with 75 joints of new 51/2-in. 14-tb J-55. Each joint was visually inspected and marked before it as run. The casing was bull plugged and floated in the hole 50 that the inside might remain dry and free of excessive attack. Also, if a leak occurred, a pressure increase could be observed on gawge at the surface. Extensive testing was done, including potential profiles, log current-potentid curves and electrode measurements from both surface and downhole connections. Based on these data, a current of 12 amps was applied to one well and 4 amps to mother. The third well was left to corrode. During the two-year period when the casing was in the ground, [he applied current was checked weekly, and reference electrode measurements were made about every two months. Three sets of casing potential profi1e.c were run. When the three strings were pulled, each joint was examined for type of scale formed, presence of sulfate-reducing bacteria, extent of corrosion nttnck and pit depth. Since the pipe was new when run, quantitative determination of the protection provided by current was possible. This is the first concrete field evidence to help resolve the many arguments about the proper method for selecting adequate current for cathodic protection of oilwell (-using. INTRODUCTION A casing string is run when a well is drilled. This pipe is supposed to protect this valuable "hole in the ground" for the life of the well. Often the casing does not last the life of the well; it is with these casing failures that this work is concerned. The cost of repairing a casing failure varies from field to field—from as much as a $30,000 per leak average in California to $5,000 per leak in Kansas. Additional costs other than actual repairs are also important. These include formation damage, lost production, etc. Casing damage caused by internal corrosion is important in some areas. Treatment normally consists of flushing inhibitor down the annulus, but further research is being done on control measures. The test described in this paper is concerned only with external corrosion. The problem of casing failure from external attack has appeared in several areas including western Kansas, California, Montana, Wyoming, Texas, Arkansas and Mississippi. Cathodic protection is currently being used in an attempt to control external corrosion. From reports in the NACE there are thousands of wells currently under cathodic protection. The quantity of current being applied ranges from 27 amps on some deep California wells to a few tenths of an amp being supplied from magnesium anodes on wells in Texas and Kansas. Considerable field and laboratory effort1,9,5,6 was exented on the problem of cathodic prctection of casing, and it became fairly obvious that this method could be used to protect wells. Early workers showed that current applied to a well distributed itself over the length of the casing and was not concentrated on the upper few hundred feet. Basic cathodic protection theory had shown that corrosion attack could be stopped by applying sufficient current. The problem resolved itself, then, into one of trying to decide just how much current was necessary. Various criteria were utilized in installing the many existing cathodic protection installations. These methods included the following. 1. Applying sufficient current to remove the anodic slope as shown by the potential profile." 7. Applying enough current to maintain all areas of the casing at a pipe-to-soil potential of .85 v.' 3. Applying the current indicated by a log current-potential (or E log I) curve." 4. Supplying the current necessary to shift the pipe to-soil potential .3 v." 5. Applying 2 or 3 milliamps of current per sq ft of casing."
Citation
APA:
Further Discussion of Paper Published in Transactions Volume 216 - A Laboratory Study of Rock Bre...MLA: Further Discussion of Paper Published in Transactions Volume 216 - A Laboratory Study of Rock Bre.... The American Institute of Mining, Metallurgical, and Petroleum Engineers,