Fluorspar (7aa58f70-3f8c-45a2-8191-7945a11151a0)

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 14
- File Size:
- 1285 KB
- Publication Date:
- Jan 1, 1994
Abstract
Fluorspar is the commercial name for fluorite, a mineral that is calcium fluoride, CaF2. The name, derived from the Latin word fluere (to flow), refers to its low melting point and its early use in metallurgy as a flux. It is the principal industrial source of the element fluorine. Two other minerals, cryolite and fluorapatite, have significant fluorine content. Cryolite, sodium aluminum fluoride, Na3AlF,, is a rare mineral that has been found in commercial quantities only in Greenland. The natural material has been supplanted by synthetic cryolite for its principal industrial use in the manufacture of aluminum. Fluorapatite, Ca5F(PO3)2, is a source of phosphate for fertilizer manufacture, containing a small percentage of fluorine. Commercially mined deposits of apatite have varying amounts of fluorine, chlorine, hydroxyl, and carbonate. HISTORY Fluorspar was used by the early Greeks and Romans for ornamental purposes as vases, drinking cups, and table tops. Various peoples, including the Chinese and the American Indians, carved ornaments and figurines from large crystals. Its usefulness as a flux was known to Agricola in 16th century Europe. Fluorspar mining began in England about 1775 and at various places in the United States between 1820 and 1840. Production grew substantially following the development of basic open hearth steelmaking, wherein it is used as a flux. Use was stimulated by growth of the steel, aluminum, chemical, and ceramic industries, particularly during World Wars I and 11. Fluorocarbons entered the picture in 1931. The use of anhydrous hydrogen fluoride (HF) as a catalyst in the manufacture of alkylate for high octane fuel began in 1942. Differential flotation for separating fluorspar from galena, sphalerite, and common gangue minerals in the 1930s and the application of heavy media concentrating methods to the treatment of low grade ores in the 1940s were outstanding technological advances that facilitated increased production. Pelletizing and briquetting of flotation concentrates for use in steel furnaces and the development of flotation schemes for beneficiating ores containing abundant dolomite and barite have been major improvements in the industry. USES OF FLUORITE Fluorspar is used to make hydrogen fluoride (HF), also called hydrofluoric acid, an intermediate for fluorocarbons, aluminum fluoride, and synthetic cryolite. It is used as a flux in the steel and ceramic industries, in iron foundry and ferroalloy practice, and has many minor specialized uses. Hydrogen fluoride is produced by reacting acid grade (97% CaF,) fluorspar with sulfuric acid in a heated kiln or retort to produce HF gas and calcium sulfate. After purification by scrubbing, condensing, and distillation; the HF is marketed as anhydrous HF, a colorless fuming liquid, or it may be absorbed in water to form the aqueous acid, usually 70% HF. Synthetic cryolite, organic and inorganic fluoride chemicals, and elemental fluorine are made from hydrofluoric acid. The acid itself is important in catalysis in the manufacture of alkylate, an ingredient in high-octane fuel for aircraft and automobiles; in steel pickling, enamel stripping, and glass etching and polishing; and in various electroplating operations. The manufacture of one ton of virgin aluminum requires about 12 to 29 kg of fluorine content in synthetic cryolite and aluminum fluoride. This quantity, through improved technology and recovery practices, is being lowered significantly in countries with the most advanced technology (i.e., Australia and Sweden), while others (i.e., Surinam and South Africa), remain at the high end. Elemental fluorine is prepared from anhydrous hydrofluoric acid by electrolysis. Gaseous at room temperature and pressure, fluorine is compressed to a liquid for shipment in cylinders or in tank trucks. Elemental fluorine is used to make uranium hexafluoride, sulfur hexafluoride, and halogen fluorides. Gaseous uranium hexafluoride is used in separating U235 from U233 by the diffusion process. Sulfur hexafluoride is a stable high dielectric gas used in coaxial cables, transformers, and radar wave guides. Halogen fluorides have important applications, mostly as substitutes for elemental fluorine, which is more difficult to handle. Emulsified perfluorochemicals, organic compounds in which all hydrogen atoms have been replaced by fluorine, are undergoing investigation as promising blood substitutes. They transport oxygen and, in conjunction with a simulated blood serum, perform many functions of whole blood. With further development, these organic compounds may ultimately, in emergencies, be useful in saving lives of animals and humans during periods of acute shortages of natural blood. Inorganic fluorides are used as insecticides, preservatives, antiseptics, ceramic additives, and fluxes and in electroplating solutions, antioxidants, and many other products. Boron trifluoride is an important catalyst. Organic fluorides are volume leaders in the fluorine chemical industry. Fluorinated chlorocarbons and fluorocarbons are prepared by the interaction of anhydrous HF with chloroform, perchlorethylene and carbon tetrachloride, and are characterized by low toxicity and notable chemical stability. They perform outstandingly as refrigerants, aerosol propellants, solvents, and cleaning agents and as intermediates for polymers such as fluorocarbon resins and elastomers. Fluorocarbon resins are inert compounds that have unusually low coefficients of friction and have found a number of applications as lubricants for parts that cannot be oiled, e.g., bearings for window raising equipment located inside of automobile doors, in small electronic equipment, for the manufacture of chem-
Citation
APA:
(1994) Fluorspar (7aa58f70-3f8c-45a2-8191-7945a11151a0)MLA: Fluorspar (7aa58f70-3f8c-45a2-8191-7945a11151a0). Society for Mining, Metallurgy & Exploration, 1994.