Finite Element Modelling Of Electric Currents In Ac Submerged Arc Furnaces

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 8
- File Size:
- 1078 KB
- Publication Date:
- Jan 1, 2007
Abstract
Finite element models were generated of two submerged arc furnaces of different geometries. A 48MW circular furnace and a 68MW 6-in-line rectangular furnace were studied. The electrodes, raw material, slag and molten metal were included in the model. ANSYS/Multiphysics was used to predict the current density distribution in the electrodes, raw material, slag and molten metal as a result of the three phase AC current. The effect of the electrode immersion on the current path was studied. The ?proximity effect? caused a pronounced asymmetry in the electrode currents in the circular furnace, whilst the electrode currents in the rectangular furnace exhibited radial symmetry. The current distribution in the melt in both furnaces indicated that the bulk of the current flows between phases. The current density is greatest between electrodes. Results were compared to qualitatively similar published work, operating experience and results of furnace dig-outs.
Citation
APA:
(2007) Finite Element Modelling Of Electric Currents In Ac Submerged Arc FurnacesMLA: Finite Element Modelling Of Electric Currents In Ac Submerged Arc Furnaces. The Southern African Institute of Mining and Metallurgy, 2007.