Extractive Metallurgy Division - Thermodynamic Relationships in Chlorine Metallurgy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. H. Kellogg
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
11
File Size:
816 KB
Publication Date:
Jan 1, 1951

Abstract

Equations representing the standard free energy of formation as a function of temperature, for thirty metallic chlorides, are presented and plotted on a free-energy vs. temperature diagram. The use of these data for calculations on reduction of metallic chlorides, refining of metals with chlorine, and chlorination of metallic oxides and sulphides is illustrated. CHLORINE metallurgy' has attracted metallur- gists for more than a century because the unusual properties of the metallic chlorides—low melting point, high volatility, and ease of formation from the oxides—make possible many useful extractive processes. Interest in chlorine processes is undergoing a renaissance due to present availability of chlorine at relatively low prices, and to recent advances in technology. During the present century there have accumulated a considerable number of reliable values of the thermodynamic constants for the metals and their chlorides. These data permit the calculation of free-energy equations for many metallurgically important reactions. Consideration of free-energy values makes possible certain predictions of the direction and extent of a given reaction, as well as the effect of temperature, pressure, and composition upon the result. Reaction rate, although not predictable from free-energy data, is usually sufficiently great at elevated temperatures that diffusion of the reactants and products to and from the zone of reaction determines the actual rate. Thus, if the free-energy indication is favorable, the chances are good that a high temperature metallurgical reaction will proceed at a reasonable rate, if adequate provision for rapid diffusion has been made. This paper presents standard free-energy equations for a number of metallic chlorides, based on data which are scattered throughout the literature. The equations are presented in a form that simplifies their use, and typical examples are given of the application of free-energy data to metallurgical processes. Free Energy of Reaction The free-energy change (AG) of a reaction is the true measure of the "driving force" of the reaction under a given set of conditions, and this is related to the standard free-energy change (AGO) of the reaction as follows: For the reaction: bB + cC = dD + eE ?G = ?G°+RTln ADd. AEA / ABb. ACc where A, = activity of constituent (i) T = absolute temperature, OK R = gas constant The criterion of a spontaneous reaction from left to right, at constant temperature and pressure, is a negative value for the free-energy change (?G). The standard free energy of the reaction is equal to the free energy of the reaction when all the reactants and products are at unit activity, since under these conditions the second term on the right-hand side of eq 1 is equal to zero. The concept of activity is treated fully in many textbooks on chemical thermodynamics1 and in a recent article by Chipman.2 Briefly, the activity (A,) of a constituent (i) is a measure of the reactivity of this constituent relative to its reactivity in some arbitrary standard state. For liquids and solids the standard state most often used is the pure liquid or solid constituent. Thus the activity of a pure liquid or solid in a metallurgical reaction is equal to unity. Gases under moderate pressure and at elevated temperatures behave very nearly as 'idea1 gases,' and the standard state is chosen as the gas at 1 atm pressure. The activity of an ideal gas is therefore equal to its partial pressure, and this relation is sufficiently exact for real gases in most metallurgical reactions. For a liquid or solid solution there is in general no simple way to express the activity of a constituent as a function of its concentration, and activity must be determined by experiment. A few solutions follow a so-called 'ideal' behavior, and if the pure constituent is chosen as the standard state, the activity of a constituent in an ideal solution becomes equal to its mol fraction. When a reaction reaches a state of thermodynamic equilibrium at constant temperature and pressure, AG becomes equal to zero and eq 1 reduces to: [ADd . AEe ?G°=RTln Abb ¦ Ac c equilibrium [2] The brackets surrounding the activity term are used to emphasize that each of the activities is an activity under equilibrium conditions—not just any arbitrarily assigned value. The bracketed term is the equilibrium constant (K) of the reaction. Eq 2 makes possible the calculation of equilibrium activities for a given reaction, if AGO is known at the desired temperature. The standard free-energy equations presented in this paper were calculated from the fundamental thermodynamic values of enthalpy of formation at 298°K (AH°,), standard entropy at 298°K (So298), heat capacity as a function of temperature (Cp), and enthalpies of transition, fusion, vaporization, and sublimation for the various constituents. Where possible the data reported in the recent "Selected Values of Chemical Thermodynamic Properties," published by the Bureau of Standards," were used. A large number of data came from the publications
Citation

APA: H. H. Kellogg  (1951)  Extractive Metallurgy Division - Thermodynamic Relationships in Chlorine Metallurgy

MLA: H. H. Kellogg Extractive Metallurgy Division - Thermodynamic Relationships in Chlorine Metallurgy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account